Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Garbage Segmentation and Attribute Analysis by Robotic Dogs (2404.18112v1)

Published 28 Apr 2024 in cs.CV and cs.RO

Abstract: Efficient waste management and recycling heavily rely on garbage exploration and identification. In this study, we propose GSA2Seg (Garbage Segmentation and Attribute Analysis), a novel visual approach that utilizes quadruped robotic dogs as autonomous agents to address waste management and recycling challenges in diverse indoor and outdoor environments. Equipped with advanced visual perception system, including visual sensors and instance segmentators, the robotic dogs adeptly navigate their surroundings, diligently searching for common garbage items. Inspired by open-vocabulary algorithms, we introduce an innovative method for object attribute analysis. By combining garbage segmentation and attribute analysis techniques, the robotic dogs accurately determine the state of the trash, including its position and placement properties. This information enhances the robotic arm's grasping capabilities, facilitating successful garbage retrieval. Additionally, we contribute an image dataset, named GSA2D, to support evaluation. Through extensive experiments on GSA2D, this paper provides a comprehensive analysis of GSA2Seg's effectiveness. Dataset available: \href{https://www.kaggle.com/datasets/hellob/gsa2d-2024}{https://www.kaggle.com/datasets/hellob/gsa2d-2024}.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. T. Wu, H. Zhang, W. Peng, F. Lü, and P. He, “Applications of convolutional neural networks for intelligent waste identification and recycling: A review,” Resources, Conservation and Recycling, vol. 190, p. 106813, 2023.
  2. M. Fulton, J. Hong, M. J. Islam, and J. Sattar, “Robotic detection of marine litter using deep visual detection models,” in International Conference on Robotics and Automation.   IEEE, 2019, pp. 5752–5758.
  3. A. Sánchez-Ferrer, A. J. Gallego, J. J. Valero-Mas, and J. Calvo-Zaragoza, “The cleansea set: a benchmark corpus for underwater debris detection and recognition,” in Iberian Conference on Pattern Recognition and Image Analysis.   Springer, 2022, pp. 616–628.
  4. T. Wang, Y. Cai, L. Liang, and D. Ye, “A multi-level approach to waste object segmentation,” Sensors, vol. 20, no. 14, p. 3816, 2020.
  5. P. F. Proença and P. Simoes, “Taco: Trash annotations in context for litter detection,” ArXiv Preprint ArXiv:2003.06975, 2020.
  6. D. Bashkirova, M. Abdelfattah, Z. Zhu, J. Akl, F. Alladkani, P. Hu, V. Ablavsky, B. Calli, S. A. Bargal, and K. Saenko, “Zerowaste dataset: towards deformable object segmentation in cluttered scenes,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 21 147–21 157.
  7. J. Hong, M. S. Fulton, and J. Sattar, “Trashcan 1.0: An instance-segmentation labeled dataset of trash observations,” 2020.
  8. M. Koskinopoulou, F. Raptopoulos, G. Papadopoulos, N. Mavrakis, and M. Maniadakis, “Resort-it dataset,” https://github.com/kskmar/ReSort-IT, 2021.
  9. K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2961–2969.
  10. Z. Cai and N. Vasconcelos, “Cascade r-cnn: High quality object detection and instance segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 5, pp. 1483–1498, 2019.
  11. Z. Huang, L. Huang, Y. Gong, C. Huang, and X. Wang, “Mask scoring r-cnn,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 6409–6418.
  12. X. Wang, R. Zhang, T. Kong, L. Li, and C. Shen, “Solov2: Dynamic and fast instance segmentation,” Advances in Neural Information Processing Systems, vol. 33, pp. 17 721–17 732, 2020.
  13. B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar, “Masked-attention mask transformer for universal image segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 1290–1299.
  14. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable visual models from natural language supervision,” in International Conference on Machine Learning.   PMLR, 2021, pp. 8748–8763.
  15. L. H. Li, P. Zhang, H. Zhang, J. Yang, C. Li, Y. Zhong, L. Wang, L. Yuan, L. Zhang, J.-N. Hwang, et al., “Grounded language-image pre-training,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 10 965–10 975.
  16. X. Zhou, R. Girdhar, A. Joulin, P. Krähenbühl, and I. Misra, “Detecting twenty-thousand classes using image-level supervision,” in European Conference on Computer Vision.   Springer, 2022, pp. 350–368.
  17. C. Lin, P. Sun, Y. Jiang, P. Luo, L. Qu, G. Haffari, Z. Yuan, and J. Cai, “Learning object-language alignments for open-vocabulary object detection,” in International Conference on Learning Representations, 2023.
  18. B. Yan, Y. Jiang, J. Wu, D. Wang, P. Luo, Z. Yuan, and H. Lu, “Universal instance perception as object discovery and retrieval,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 15 325–15 336.
  19. K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu, Z. Zhang, D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li, X. Lu, R. Zhu, Y. Wu, J. Dai, J. Wang, J. Shi, W. Ouyang, C. C. Loy, and D. Lin, “MMDetection: Open mmlab detection toolbox and benchmark,” ArXiv Preprint ArXiv:1906.07155, 2019.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com