Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Attention Reinforcement Learning for Multicast Routing and Age-Optimal Scheduling (2404.18084v6)

Published 28 Apr 2024 in cs.NI

Abstract: Multicast routing is essential for real-time group applications, such as video streaming, virtual reality, and metaverse platforms, where the Age of Information (AoI) acts as a crucial metric to assess information timeliness. This paper studies dynamic multicast networks with the objective of minimizing the expected average Age of Information (AoI) by jointly optimizing multicast routing and scheduling. The main challenges stem from the intricate coupling between routing and scheduling decisions, the inherent complexity of multicast operations, and the graph representation. We first decompose the original problem into two subtasks amenable to hierarchical reinforcement learning (RL) methods. We propose the first RL framework to address the multicast routing problem, also known as the Steiner Tree problem, by incorporating graph embedding and the successive addition of nodes and links. For graph embedding, we propose the Normalized Graph Attention mechanism (NGAT) framework with a proven contraction mapping property, enabling effective graph information capture and superior generalization within the hierarchical RL framework. We validate our framework through experiments on four datasets, including the real-world AS-733 dataset. The results demonstrate that our proposed scheme can be up to 9.85 times more computationally efficient than traditional multicast routing algorithms, achieving approximation ratios of 1.1-1.3 that are not only comparable to state-of-the-art (SOTA) methods but also highlight its superior generalization capabilities, performing effectively on unseen and more complex tasks. Additionally, our age-optimal TGMS algorithm reduces the average weighted Age of Information (AoI) by 25.6% and the weighted peak age by 29.2% under low-energy scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. X. Jiang, F. R. Yu, T. Song, and V. C. Leung, “A survey on multi-access edge computing applied to video streaming: Some research issues and challenges,” IEEE Communications Surveys & Tutorials, vol. 23, no. 2, pp. 871–903, 2021.
  2. L. Yin, J. Gui, Z. Zeng, et al., “Improving energy efficiency of multimedia content dissemination by adaptive clustering and d2d multicast,” Mobile Information Systems, vol. 2019, 2019.
  3. B. Quinn and K. Almeroth, “Ip multicast applications: Challenges and solutions,” tech. rep., 2001.
  4. S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one update?,” in 2012 Proceedings IEEE INFOCOM, pp. 2731–2735, IEEE, 2012.
  5. R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and S. Ulukus, “Age of information: An introduction and survey,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 5, pp. 1183–1210, 2021.
  6. J. Li, Y. Zhou, and H. Chen, “Age of information for multicast transmission with fixed and random deadlines in iot systems,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8178–8191, 2020.
  7. S. F. Lindström, M. Wetterberg, and N. Carlsson, “Cloud gaming: A qoe study of fast-paced single-player and multiplayer gaming,” in 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC), pp. 34–45, IEEE, 2020.
  8. A. A. Barakabitze, N. Barman, A. Ahmad, S. Zadtootaghaj, L. Sun, M. G. Martini, and L. Atzori, “Qoe management of multimedia streaming services in future networks: a tutorial and survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 1, pp. 526–565, 2019.
  9. C. A. Oliveira and P. M. Pardalos, “A survey of combinatorial optimization problems in multicast routing,” Computers & Operations Research, vol. 32, no. 8, pp. 1953–1981, 2005.
  10. D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2014.
  11. M. Xie, J. Gong, X. Jia, and X. Ma, “Age and energy tradeoff for multicast networks with short packet transmissions,” IEEE Transactions on Communications, vol. 69, no. 9, pp. 6106–6119, 2021.
  12. I. Ljubić, “Solving steiner trees: Recent advances, challenges, and perspectives,” Networks, vol. 77, no. 2, pp. 177–204, 2021.
  13. M. Kim, J. Park, et al., “Learning collaborative policies to solve np-hard routing problems,” Advances in Neural Information Processing Systems, vol. 34, pp. 10418–10430, 2021.
  14. Prentice hall Upper Saddle River, 2001.
  15. X. Lin and L. M. Ni, “Multicast communication in multicomputer networks,” IEEE transactions on Parallel and Distributed Systems, vol. 4, no. 10, pp. 1105–1117, 1993.
  16. A. Sinha, L. Tassiulas, and E. Modiano, “Throughput-optimal broadcast in wireless networks with dynamic topology,” in Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 21–30, 2016.
  17. E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning combinatorial optimization algorithms over graphs,” Advances in neural information processing systems, vol. 30, 2017.
  18. S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention networks?,” arXiv preprint arXiv:2105.14491, 2021.
  19. J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: densification laws, shrinking diameters and possible explanations,” in Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, pp. 177–187, 2005.
  20. G. Singal, V. Laxmi, M. S. Gaur, D. V. Rao, R. Kushwaha, D. Garg, and N. Kumar, “Qos–aware mesh-based multicast routing protocols in edge ad hoc networks: Concepts and challenges,” ACM Transactions on Internet Technology (TOIT), vol. 22, no. 1, pp. 1–27, 2021.
  21. S. Kumar, A. Goswami, R. Gupta, S. P. Singh, and A. Lay-Ekuakille, “A game-theoretic approach for cost-effective multicast routing in the internet of things,” IEEE Internet of Things Journal, vol. 9, no. 18, pp. 18041–18053, 2022.
  22. D. Hatano and Y. Yoshida, “Computational aspects of the preference cores of supermodular two-scenario cooperative games.,” in IJCAI, pp. 310–316, 2018.
  23. Z. Zhang, H. Chen, M. Hua, C. Li, Y. Huang, and L. Yang, “Double coded caching in ultra dense networks: Caching and multicast scheduling via deep reinforcement learning,” IEEE Transactions on Communications, vol. 68, no. 2, pp. 1071–1086, 2019.
  24. I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano, “Scheduling policies for minimizing age of information in broadcast wireless networks,” IEEE/ACM Transactions on Networking, vol. 26, no. 6, pp. 2637–2650, 2018.
  25. J. Sun, L. Wang, Z. Jiang, S. Zhou, and Z. Niu, “Age-optimal scheduling for heterogeneous traffic with timely throughput constraints,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 5, pp. 1485–1498, 2021.
  26. H. H. Yang, A. Arafa, T. Q. Quek, and H. V. Poor, “Optimizing information freshness in wireless networks: A stochastic geometry approach,” IEEE Transactions on Mobile Computing, vol. 20, no. 6, pp. 2269–2280, 2020.
  27. X. Chen, K. Gatsis, H. Hassani, and S. S. Bidokhti, “Age of information in random access channels,” IEEE Transactions on Information Theory, vol. 68, no. 10, pp. 6548–6568, 2022.
  28. R. D. Yates and S. K. Kaul, “The age of information: Real-time status updating by multiple sources,” IEEE Transactions on Information Theory, vol. 65, no. 3, pp. 1807–1827, 2018.
  29. A. M. Bedewy, Y. Sun, and N. B. Shroff, “Minimizing the age of information through queues,” IEEE Transactions on Information Theory, vol. 65, no. 8, pp. 5215–5232, 2019.
  30. L. Huang and E. Modiano, “Optimizing age-of-information in a multi-class queueing system,” in 2015 IEEE international symposium on information theory (ISIT), pp. 1681–1685, IEEE, 2015.
  31. A. M. Bedewy, Y. Sun, and N. B. Shroff, “Age-optimal information updates in multihop networks,” in 2017 IEEE International Symposium on Information Theory (ISIT), pp. 576–580, IEEE, 2017.
  32. A. M. Bedewy, Y. Sun, and N. B. Shroff, “The age of information in multihop networks,” IEEE/ACM Transactions on Networking, vol. 27, no. 3, pp. 1248–1257, 2019.
  33. B. Buyukates, A. Soysal, and S. Ulukus, “Age of information in multihop multicast networks,” Journal of Communications and Networks, vol. 21, no. 3, pp. 256–267, 2019.
  34. F. Wu, H. Zhang, J. Wu, Z. Han, H. V. Poor, and L. Song, “Uav-to-device underlay communications: Age of information minimization by multi-agent deep reinforcement learning,” IEEE Transactions on Communications, vol. 69, no. 7, pp. 4461–4475, 2021.
  35. M. Sun, X. Xu, X. Qin, and P. Zhang, “Aoi-energy-aware uav-assisted data collection for iot networks: A deep reinforcement learning method,” IEEE Internet of Things Journal, vol. 8, no. 24, pp. 17275–17289, 2021.
  36. O. S. Oubbati, M. Atiquzzaman, H. Lim, A. Rachedi, and A. Lakas, “Synchronizing uav teams for timely data collection and energy transfer by deep reinforcement learning,” IEEE Transactions on Vehicular Technology, vol. 71, no. 6, pp. 6682–6697, 2022.
  37. M. A. Abd-Elmagid, H. S. Dhillon, and N. Pappas, “A reinforcement learning framework for optimizing age of information in rf-powered communication systems,” IEEE Transactions on Communications, vol. 68, no. 8, pp. 4747–4760, 2020.
  38. X. Wu, X. Li, J. Li, P. Ching, and H. V. Poor, “Deep reinforcement learning for lot networks: Age of information and energy cost tradeoff,” in GLOBECOM 2020-2020 IEEE Global Communications Conference, pp. 1–6, IEEE, 2020.
  39. K. Shi, X. Zhang, S. Zhang, and H. Li, “Time-expanded graph based energy-efficient delay-bounded multicast over satellite networks,” IEEE Transactions on Vehicular Technology, vol. 69, no. 9, pp. 10380–10384, 2020.
  40. V. Tripathi, R. Talak, and E. Modiano, “Information freshness in multihop wireless networks,” IEEE/ACM Transactions on Networking, 2022.
  41. S. Mukherjee, F. Bronzino, S. Srinivasan, J. Chen, and D. Raychaudhuri, “Achieving scalable push multicast services using global name resolution,” in 2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, IEEE, 2016.
  42. Q. Yu, H. Wan, X. Zhao, Y. Gao, and M. Gu, “Online scheduling for dynamic vm migration in multicast time-sensitive networks,” IEEE Transactions on Industrial Informatics, vol. 16, no. 6, pp. 3778–3788, 2019.
  43. R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods for reinforcement learning with function approximation,” Advances in neural information processing systems, vol. 12, 1999.
  44. K. Zhang, A. Koppel, H. Zhu, and T. Basar, “Global convergence of policy gradient methods to (almost) locally optimal policies,” SIAM Journal on Control and Optimization, vol. 58, no. 6, pp. 3586–3612, 2020.
  45. Springer, 2018.
Citations (1)

Summary

We haven't generated a summary for this paper yet.