Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Over-the-Air Fusion of Sparse Spatial Features for Integrated Sensing and Edge AI over Broadband Channels (2404.17973v2)

Published 27 Apr 2024 in cs.IT, eess.SP, and math.IT

Abstract: The 6G mobile networks feature two new usage scenarios -- distributed sensing and edge AI. Their natural integration, termed integrated sensing and edge AI (ISEA), promises to create a platform that enables intelligent environment perception for wide-ranging applications. A basic operation in ISEA is for a fusion center to acquire and fuse features of spatial sensing data distributed at many edge devices (known as agents), which is confronted by a communication bottleneck due to multiple access over hostile wireless channels. To address this issue, we propose a novel framework, called Spatial Over-the-Air Fusion (Spatial AirFusion), which exploits radio waveform superposition to aggregate spatially sparse features over the air and thereby enables simultaneous access. The framework supports simultaneous aggregation over multiple voxels, which partition the 3D sensing region, and across multiple subcarriers. It exploits both spatial feature sparsity with channel diversity to pair voxel-level aggregation tasks and subcarriers to maximize the minimum receive signal-to-noise ratio among voxels. Optimally solving the resultant mixed-integer problem of Voxel-Carrier Pairing and Power Allocation (VoCa-PPA) is a focus of this work. The proposed approach hinges on derivations of optimal power allocation as a closed-form function of voxel-carrier pairing and a useful property of VoCa-PPA that allows dramatic solution space reduction. Both a low-complexity greedy algorithm and an optimal tree-search algorithm are then designed for VoCa-PPA. The latter is accelerated with a customised compact search tree, node pruning and agent ordering. Extensive simulations using real datasets demonstrate that Spatial AirFusion significantly reduces computation errors and improves sensing accuracy compared with conventional over-the-air computation without awareness of spatial sparsity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. ITU-R, “Framework and overall objectives of the future development of IMT for 2030 and beyond,” [Online] https://www.itu.int/rec/R-REC-M.2160-0-202311-I/en, 2023.
  2. X. Chen, K. B. Letaief, and K. Huang, “On the view-and-channel aggregation gain in integrated sensing and edge AI,” to appear in IEEE Trans. Wireless Commun., 2024.
  3. Z. Liu, Q. Lan, A. E. Kalør, P. Popovski, and K. Huang, “Over-the-air multi-view pooling for distributed sensing,” IEEE Trans. Wireless Commun., early access, Dec. 25, 2023, doi: 10.1109/TWC.2023.3343086.
  4. D. Wen, P. Liu, G. Zhu, Y. Shi, J. Xu, Y. C. Eldar, and S. Cui, “Task-oriented sensing, computation, and communication integration for multi-device edge AI,” IEEE Trans. Wireless Commun., vol. 23, no. 3, pp. 2486–2502, Mar. 2024.
  5. H. Xing, G. Zhu, D. Liu, H. Wen, K. Huang, and K. Wu, “Task-oriented integrated sensing, computation and communication for wireless edge AI,” IEEE Netw., vol. 37, no. 4, pp. 135–144, July/August 2023.
  6. K. B. Letaief, Y. Shi, J. Lu, and J. Lu, “Edge artificial intelligence for 6G: Vision, enabling technologies, and applications,” IEEE J. Sel. Areas Commun., vol. 40, no. 1, pp. 5–36, Jan. 2022.
  7. G. Zhu, J. Xu, K. Huang, and S. Cui, “Over-the-air computing for wireless data aggregation in massive IoT,” IEEE Wireless Commun., vol. 28, no. 4, pp. 57–65, Aug. 2021.
  8. G. Zhu, Y. Wang, and K. Huang, “Broadband analog aggregation for low-latency federated edge learning,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 491–506, Jan. 2020.
  9. M. M. Amiri and D. Gündüz, “Federated learning over wireless fading channels,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3546–3557, May 2020.
  10. M. Chen, D. Gündüz, K. Huang, W. Saad, M. Bennis, A. V. Feljan, and H. V. Poor, “Distributed learning in wireless networks: Recent progress and future challenges,” IEEE J. Sel. Areas Commun., vol. 39, no. 12, pp. 3579–3605, Dec. 2021.
  11. Y. Zhou and O. Tuzel, “VoxelNet: End-to-end learning for point cloud based 3D object detection,” in Proc. IEEE/CVF Conf. Comput. Vision Pattern Recogn. (CVPR), Salt Lake City, UT, USA, Jun. 18–23, 2018.
  12. D. Rukhovich, A. Vorontsova, and A. Konushin, “ImVoxelNet: Image to voxels projection for monocular and multi-view general-purpose 3d object detection,” in Proc. IEEE/CVF Winter Conf. Appl. Computer Vision (WACV), Waikoloa, HI, USA, Jan. 3–8, 2022.
  13. E. Xie, Z. Yu, D. Zhou, J. Philion, A. Anandkumar, S. Fidler, P. Luo, and J. M. Alvarez, “M2BEV: Multi-camera joint 3D detection and segmentation with unified birds-eye view representation,” [Online] https://arxiv.org/pdf/2204.05088.pdf, 2022.
  14. Q. Lan, Q. Zeng, P. Popovski, D. Gündüz, and K. Huang, “Progressive feature transmission for split classification at the wireless edge,” IEEE Trans. Wireless Commun., vol. 22, no. 6, pp. 3837–3852, Jun. 2023.
  15. J. Shao, Y. Mao, and J. Zhang, “Task-oriented communication for multidevice cooperative edge inference,” IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 73–87, Jan. 2023.
  16. J. Shao and J. Zhang, “Communication-computation trade-off in resource-constrained edge inference,” IEEE Commun. Mag., vol. 58, no. 12, pp. 20–26, Dec. 2020.
  17. X. Huang and S. Zhou, “Dynamic compression ratio selection for edge inference systems with hard deadlines,” IEEE Internet Things J., vol. 7, no. 9, pp. 8800–8810, Sep. 2020.
  18. S. F. Yilmaz, B. Hasırcıoğlu, and D. Gündüz, “Over-the-air ensemble inference with model privacy,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Espoo, Finland, Jun. 26 – Jul. 1, 2022.
  19. Z. Zhuang, D. Wen, Y. Shi, G. Zhu, S. Wu, and D. Niyato, “Integrated sensing-communication-computation for over-the-air edge AI inference,” IEEE Trans. Wireless Commun., vol. 23, no. 4, pp. 3205–3220, Apr. 2024.
  20. B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing interference through structured codes,” IEEE Trans. Inf. Theory, vol. 57, no. 10, pp. 6463–6486, Oct. 2011.
  21. O. Abari, H. Rahul, and D. Katabi, “Over-the-air function computation in sensor networks,” [Online] https://arxiv.org/pdf/1612.02307.pdf, 2016.
  22. X. Cao, G. Zhu, J. Xu, and K. Huang, “Optimized power control for over-the-air computation in fading channels,” IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7498–7513, Nov. 2020.
  23. G. Zhu and K. Huang, “MIMO over-the-air computation for high-mobility multimodal sensing,” IEEE Internet Things J., vol. 6, no. 4, pp. 6089–6103, Aug. 2019.
  24. X. Cao, G. Zhu, J. Xu, and K. Huang, “Cooperative interference management for over-the-air computation networks,” IEEE Trans. Wireless Commun., vol. 20, no. 4, pp. 2634–2651, Apr. 2021.
  25. M. Krouka, A. Elgabli, C. ben Issaid, and M. Bennis, “Communication-efficient split learning based on analog communication and over the air aggregation,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Madrid, Spain, Dec. 7-11, 2021.
  26. T. Qin, W. Liu, B. Vucetic, and Y. Li, “Over-the-air computation via broadband channels,” IEEE Wireless Commun. Lett., vol. 10, no. 10, pp. 2150–2154, Oct. 2021.
  27. Z. Lin, H. Liu, and Y.-J. A. Zhang, “CFLIT: Coexisting federated learning and information transfer,” IEEE Trans. Wireless Commun., vol. 22, no. 11, pp. 8436–8453, Nov. 2023.
  28. N. Zhang and M. Tao, “Gradient statistics aware power control for over-the-air federated learning,” IEEE Trans. Wireless Commun., vol. 20, no. 8, pp. 5115–5128, Aug. 2021.
  29. Y. Sun, Z. Lin, Y. Mao, S. Jin, and J. Zhang, “Channel and gradient-importance aware device scheduling for over-the-air federated learning,” IEEE Trans. Wireless Commun., early access, Dec. 4, 2023, doi: 10.1109/TWC.2023.3336277.
  30. T. Sery, N. Shlezinger, K. Cohen, and Y. C. Eldar, “Over-the-air federated learning from heterogeneous data,” IEEE Trans. Signal Process., vol. 69, pp. 3796–3811, Jun. 2021.
  31. W. Liu, X. Zang, Y. Li, and B. Vucetic, “Over-the-air computation systems: Optimization, analysis and scaling laws,” IEEE Trans. Wireless Commun., vol. 19, no. 8, pp. 5488–5502, Aug. 2020.
  32. M. Ehrgott, “A discussion of scalarization techniques for multiple objective integer programming,” Ann. Oper. Res., vol. 147, no. 1, pp. 343–360, 2006.
  33. R. Xu, H. Xiang, X. Xia, X. Han, J. Li, and J. Ma, “OPV2V: An open benchmark dataset and fusion pipeline for perception with vehicle-to-vehicle communication,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Philadelphia, PA, USA, May 23–27, 2022.
  34. K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-the-air computation,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 2022–2035, Mar. 2020.
  35. L. Belhoul, L. Galand, and D. Vanderpooten, “An efficient procedure for finding best compromise solutions to the multi-objective assignment problem,” Comput. Oper. Res., vol. 49, pp. 97–106, Sep. 2014.
  36. Q. Chen, X. Ma, S. Tang, J. Guo, Q. Yang, and S. Fu, “F-Cooper: Feature based cooperative perception for autonomous vehicle edge computing system using 3D point clouds,” in Proc. ACM/IEEE Symp. Edge Comput., Washington, DC, USA, Nov. 7–9, 2019.
  37. K. Kim, Y. Han, and S.-L. Kim, “Joint subcarrier and power allocation in uplink OFDMA systems,” IEEE Commun. Lett., vol. 9, no. 6, pp. 526–528, Jun. 2005.
  38. K. Huang, Q. Lan, Z. Liu, and L. Yang, “Semantic data sourcing for 6G edge intelligence,” IEEE Commun. Mag., vol. 61, no. 12, pp. 70–76, Dec. 2023.
Citations (2)

Summary

We haven't generated a summary for this paper yet.