Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automating Zero-Shot Patch Porting for Hard Forks (2404.17964v1)

Published 27 Apr 2024 in cs.SE

Abstract: Forking is a typical way of code reuse, which provides a simple way for developers to create a variant software (denoted as hard fork) by copying and modifying an existing codebase. Despite of the benefits, forking also leads to duplicate efforts in software maintenance. Developers need to port patches across the hard forks to address similar bugs or implement similar features. Due to the divergence between the source project and the hard fork, patch porting is complicated, which requires an adaption regarding different implementations of the same functionality. In this work, we take the first step to automate patch porting for hard forks under a zero-shot setting. We first conduct an empirical study of the patches ported from Vim to Neovim over the last ten years to investigate the necessities of patch porting and the potential flaws in the current practice. We then propose a LLM based approach (namely PPatHF) to automatically port patches for hard forks on a function-wise basis. Specifically, PPatHF is composed of a reduction module and a porting module. Given the pre- and post-patch versions of a function from the reference project and the corresponding function from the target project, the reduction module first slims the input functions by removing code snippets less relevant to the patch. Then, the porting module leverages a LLM to apply the patch to the function from the target project. We evaluate PPatHF on 310 Neovim patches ported from Vim. The experimental results show that PPatHF outperforms the baselines significantly. Specifically, PPatHF can correctly port 131 (42.3%) patches and automate 57% of the manual edits required for the developer to port the patch.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com