Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extrapolating on Taylor Series Solutions of Homotopies with Nearby Poles (2404.17681v1)

Published 26 Apr 2024 in math.NA and cs.NA

Abstract: A polynomial homotopy is a family of polynomial systems in one parameter, which defines solution paths starting from known solutions and ending at solutions of a system that has to be solved. We consider paths leading to isolated singular solutions, to which the Taylor series converges logarithmically. Whether or not extrapolation algorithms manage to accelerate the slowly converging series depends on the proximity of poles close to the disk of convergence of the Taylor series.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. N. Bliss and J. Verschelde. The method of Gauss-Newton to compute power series solutions of polynomial homotopies. Linear Algebra and its Applications, 542:569–588, 2018.
  2. C. Brezinski. Accélération de suites à convergence logarithmique. C. R. Acad. Sc. Paris, Série A, 273:727–730, 1971.
  3. C. Brezinski. A general extrapolation algorithm. Numerische Mathematik, 35(2):175–187, 1980.
  4. C. Brezinski and M. Redivo Zaglia. Extrapolation Methods, volume 2 of Studies in Computational Mathematics. North-Holland, 1991.
  5. A. Cuyt and L. Wuytack. Nonlinear Methods in Numerical Analysis. North-Holland, Elsevier Science Publishers, 1987.
  6. J. P. Delahaye and B. Germain-Bonne. Résultats négatifs en accélération de la convergence. Numerische Mathematik, 35(4):443–457, 1980.
  7. J. P. Delahaye and B. Germain-Bonne. The set of logarithmically convergent sequences cannot be accelerated. SIAM Journal on Numerical Analysis, 19(4):840–844, 1982.
  8. E. Fabry. Sur les points singuliers d’une fonction donnée par son développement en série et l’impossibilité du prolongement analytique dans des cas très généraux. Annales scientifiques de l’École Normale Supérieure, 13:367–399, 1896.
  9. C. Kowaleski. Accélération de la convergence pour certaines suites à convergence logarithmique. In M.G. de Bruin and H. van Rossum, editors, Padé Approximation and its Applications, Amsterdam 1980, volume 888 of Lecture Notes in Mathematics, pages 263–272. Springer-Verlag, 1981.
  10. M. Redivo Zaglia. Particular rules for the ΘΘ\Thetaroman_Θ-algorithm. Numerical Algorithms, 3:353–370, 1992.
  11. A. Sidi. Practical Extrapolation Methods. Theory and Applications, volume 10 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 2003.
  12. A robust numerical path tracking algorithm for polynomial homotopy continuation. SIAM Journal on Scientific Computing, 42(6):3610–A3637, 2020.
  13. J. Verschelde. Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw., 25(2):251–276, 1999. Available at https://github.com/janverschelde/PHCpack.
  14. J. Verschelde and K. Viswanathan. Extrapolating solution paths of polynomial homotopies towards singularities with PHCpack and phcpy. arXiv:2403.14844.
  15. J. Verschelde and K. Viswanathan. Locating the closest singularity in a polynomial homotopy. In Proceedings of the 24th International Workshop on Computer Algebra in Scientific Computing (CASC 2022), volume 13366 of Lecture Notes in Computer Science, pages 333–352. Springer-Verlag, 2022.
  16. E.J. Weniger. Nonlinear sequence transformations for the acceleration of convergence and the summation of series. Computer Physics Reports, 10:189–371, 1989.
  17. P. Wynn. On a procrustean technique for the numerical transformation of slowly convergent sequences and series. Proc. Camb. Phil. Soc., 52:663–672, 1956.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com