Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting many-body localization for scalable variational quantum simulation (2404.17560v1)

Published 26 Apr 2024 in quant-ph

Abstract: Variational quantum algorithms have emerged as a promising approach to achieving practical quantum advantages using near-term quantum devices. Despite their potential, the scalability of these algorithms poses a significant challenge. This is largely attributed to the "barren plateau" phenomenon, which persists even in the absence of noise. In this work, we explore the many-body localization (MBL)-thermalization phase transitions within a framework of Floquet-initialized variational quantum circuits and investigate how MBL could be used to avoid barren plateaus. The phase transitions are observed through calculations of the inverse participation ratio, the entanglement entropy, and a metric termed \text{low-weight stabilizer R\'enyi entropy}. A critical element of our study involves the experimental validation of the phase transitions using the 127-qubit IBMQ Brisbane quantum processor. By initializing the circuit in the MBL phase and employing an easily preparable initial state, we find it is possible to prevent the formation of a unitary 2-design, resulting in an output state with entanglement that follows an area- rather than a volume-law, and which circumvents barren plateaus throughout the optimization. Utilizing this methodology, we successfully determine the ground states of various model Hamiltonians across different phases and show that the resources required for the optimization are significantly reduced. These results provide new insights into the interplay between MBL and quantum computing and suggest that the role of MBL states should be considered in the design of quantum algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. J. Preskill, Quantum 2, 79 (2018).
  2. D. Wecker, M. B. Hastings, and M. Troyer, Phys. Rev. A 92, 042303 (2015).
  3. E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm (2014), arXiv:1411.4028 [quant-ph] .
  4. D. Gross, S. T. Flammia, and J. Eisert, Phys. Rev. Lett. 102, 190501 (2009).
  5. C. Ortiz Marrero, M. Kieferová, and N. Wiebe, PRX Quantum 2, 040316 (2021).
  6. C.-Y. Park and N. Killoran, Quantum 8, 1239 (2024).
  7. P. W. Anderson, Phys. Rev. 109, 1492 (1958).
  8. D. Basko, I. Aleiner, and B. Altshuler, Annals of Physics 321, 1126 (2006).
  9. R. Nandkishore and D. A. Huse, Annual Review of Condensed Matter Physics 6, 15 (2015).
  10. J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82, 277 (2010).
  11. K. Su and M. J. Lawler, Phys. Rev. B 106, 214310 (2022).
  12. A. Lazarides, A. Das, and R. Moessner, Phys. Rev. Lett. 115, 030402 (2015).
  13. D. A. Abanin, W. De Roeck, and F. Huveneers, Annals of Physics 372, 1 (2016).
  14. D. R. Hartree, Mathematical Proceedings of the Cambridge Philosophical Society 24, 89–110 (1928a).
  15. D. R. Hartree, Mathematical Proceedings of the Cambridge Philosophical Society 24, 111–132 (1928b).
  16. F. Verstraete, V. Murg, and J. Cirac, Advances in Physics 57, 143 (2008).
  17. U. Schollwöck, Annals of Physics 326, 96 (2011), january 2011 Special Issue.
  18. D. Gross, K. Audenaert, and J. Eisert, Journal of Mathematical Physics 48, 10.1063/1.2716992 (2007), 052104.
  19. A. D. Luca and A. Scardicchio, Europhysics Letters 101, 37003 (2013).
  20. S. Sim, P. D. Johnson, and A. Aspuru-Guzik, Advanced Quantum Technologies 2, 1900070 (2019).
  21. A. W. Harrow, The church of the symmetric subspace (2013), arXiv:1308.6595 [quant-ph] .
  22. A. Pal and D. A. Huse, Phys. Rev. B 82, 174411 (2010).
  23. L. Leone, S. F. E. Oliviero, and A. Hamma, Phys. Rev. Lett. 128, 050402 (2022).
  24. N. P. Breuckmann and J. N. Eberhardt, PRX Quantum 2, 040101 (2021).
  25. D. N. Page, Phys. Rev. Lett. 71, 1291 (1993).
  26. S. K. Foong and S. Kanno, Phys. Rev. Lett. 72, 1148 (1994).
  27. M. B. Hastings, Journal of Statistical Mechanics: Theory and Experiment 2007, P08024 (2007).
  28. S. Aubry and G. André, Ann. Israel Phys. Soc 3, 18 (1980).
  29. P. Jordan and E. Wigner, Zeitschrift für Physik 47, 631 (1928).
  30. R. Orús, Nature Reviews Physics 1, 538 (2019).
  31. G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).
  32. C. Zoufal, A. Lucchi, and S. Woerner, npj Quantum Information 5, 103 (2019).
  33. S.-J. Ran, Phys. Rev. A 101, 032310 (2020).
  34. C. Cao, H. Yano, and Y. O. Nakagawa, Phys. Rev. Res. 6, 013205 (2024).
  35. C.-Y. Park, M. Kang, and J. Huh, Hardware-efficient ansatz without barren plateaus in any depth (2024), arXiv:2403.04844 [quant-ph] .
  36. R. R. Tucci, An introduction to cartan’s kak decomposition for qc programmers (2005), arXiv:quant-ph/0507171 [quant-ph] .
  37. A. Y. Kitaev, Russian Mathematical Surveys 52, 1191 (1997).
  38. S. Datta, S. Howard, and D. Cochran, Linear Algebra and Its Applications 437, 2455 (2012).
  39. R. N. Youngworth, B. B. Gallagher, and B. L. Stamper, in Optical Manufacturing and Testing VI, Vol. 5869, edited by H. P. Stahl, International Society for Optics and Photonics (SPIE, 2005) p. 58690U.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com