Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards quantum utility for NMR quantum simulation on a NISQ computer (2404.17548v1)

Published 26 Apr 2024 in quant-ph

Abstract: While the recent demonstration of accurate computations of classically intractable simulations on noisy quantum processors brings quantum advantage closer, there is still the challenge of demonstrating it for practical problems. Here we investigate the application of noisy intermediate-scale quantum devices for simulating nuclear magnetic resonance (NMR) experiments in the high-field regime. In this work, the NMR interactions are mapped to a quantum device via a product formula with minimal resource overhead, an approach that we discuss in detail. Using this approach, we show the results of simulations of liquid-state proton NMR spectra on relevant molecules with up to 11 spins, and up to a total of 47 atoms, and compare them with real NMR experiments. Despite current limitations, we show that a similar approach will eventually lead to a case of quantum utility, a scenario where a practically relevant computational problem can be solved by a quantum computer but not by conventional means. We provide an experimental estimation of the amount of quantum resources needed for solving larger instances of the problem with the presented approach. The polynomial scaling we demonstrate on real processors is a foundational step in bringing practical quantum computation closer to reality.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. L. M. K. Vandersypen and I. L. Chuang, Rev. Mod. Phys. 76, 1037 (2005).
  2. T. N. M. R. S. of Japan, Experimental Approaches of NMR Spectroscopy: Methodology and Application to Life Science and Materials Science (Springer Nature Singapore, 2017).
  3. Nature Reviews Methods Primers 1, 4 (2021).
  4. Y. I. Manin, Computable and Uncomputable (Soviet Radio, 1980).
  5. R. P. Feynman, International Journal of Theoretical Physics 21, 467 (1982).
  6. I. Kuprov, Spin: From Basic Symmetries to Quantum Optimal Control (Springer International Publishing, 2023).
  7. G. Parker and F. Lado, Phys. Rev. B 9 (1974), 10.1103/PhysRevB.9.22.
  8. M. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Resonance (Wiley, 2013).
  9. C. Mc Keever and M. Lubasch, Phys. Rev. Res. 5, 023146 (2023).
  10. L. M. Trenkwalder, E. Scerri, T. E. O’Brien,  and V. Dunjko, “Compilation of product-formula hamiltonian simulation via reinforcement learning,”  (2023), arXiv:2311.04285 [quant-ph] .
  11. Qiskit contributors, “Qiskit: An open-source framework for quantum computing,”  (2023).
  12. S. Aaronson, The Future of Quantum Supremacy Experiments (Q2B23 SV, 2023).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com