Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Consistent Second Moment Methods with Scalable Linear Solvers for Radiation Transport (2404.17473v1)

Published 26 Apr 2024 in math.NA and cs.NA

Abstract: Second Moment Methods (SMMs) are developed that are consistent with the Discontinuous Galerkin (DG) spatial discretization of the discrete ordinates (or \Sn) transport equations. The low-order (LO) diffusion system of equations is discretized with fully consistent \Pone, Local Discontinuous Galerkin (LDG), and Interior Penalty (IP) methods. A discrete residual approach is used to derive SMM correction terms that make each of the LO systems consistent with the high-order (HO) discretization. We show that the consistent methods are more accurate and have better solution quality than independently discretized LO systems, that they preserve the diffusion limit, and that the LDG and IP consistent SMMs can be scalably solved in parallel on a challenging, multi-material benchmark problem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. E. Lewis and W. Miller Jr., “A comparison of p1 synthetic acceleration techniques,” in Transations of the American Nuclear Society 23, 1976.
  2. V. Ya. Gol’din, “A quasi-diffusion method of solving the kinetic equation,” USSR Computational Mathematics and Mathematical Physics, vol. 4, pp. 136–149, 1964.
  3. H. Park, D. A. Knoll, R. M. Rauenzahn, A. B. Wollaber, and J. D. Densmore, “A consistent, moment-based, multiscale solution approach for thermal radiative transfer problems,” Transport Theory and Statistical Physics, vol. 41, no. 3-4, pp. 284–303, 2012. [Online]. Available: https://doi.org/10.1080/00411450.2012.671224
  4. H. Park, D. A. Knoll, and C. K. Newman, “Nonlinear acceleration of transport criticality problems,” Nuclear Science and Engineering, vol. 172, no. 1, pp. 52–65, 2012.
  5. C. Newman, G. Womeldorff, L. Chacón, and D. A. Knoll, “High-order/low-order methods for ocean modeling,” Procedia Computational Science, vol. 51, no. C, p. 2086–2096, sep 2015.
  6. L. Chacón, G. Chen, D. A. Knoll, C. Newman, H. Park, W. Taitano, J. A. Willert, and G. Womeldorff, “Multiscale high-order/low-order (HOLO) algorithms and applications,” Journal of Computational Physics, vol. 330, pp. 21–45, 2017. [Online]. Available: https://doi-org.libproxy.berkeley.edu/10.1016/j.jcp.2016.10.069
  7. J. S. Warsa, M. Benzi, T. A. Wareing, and J. E. Morel, “Preconditioning a mixed discontinuous finite element method for radiation diffusion,” Numerical Linear Algebra with Applications, vol. 11, pp. 795–811, 2004.
  8. D. Y. Anistratov and J. S. Warsa, “Discontinuous finite element quasi-diffusion methods,” Nuclear Science and Engineering, vol. 191, no. 2, pp. 105–120, 2018.
  9. J. Warsa and D. Anistratov, “Two-level transport methods with independent discretization,” Journal of Computational and Theoretical Transport, vol. 47, no. 4-6, pp. 424–450, 2018.
  10. S. Olivier, W. Pazner, T. S. Haut, and B. C. Yee, “A family of independent variable eddington factor methods with efficient preconditioned iterative solvers,” Journal of Computational Physics, vol. 473, p. 111747, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0021999122008105
  11. S. S. Olivier and J. E. Morel, “Variable Eddington factor method for the SNsubscript𝑆𝑁S_{N}italic_S start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT equations with lumped discontinuous Galerkin spatial discretization coupled to a drift-diffusion acceleration equation with mixed finite-element discretization,” Journal of Computational and Theoretical Transport, vol. 46, no. 6-7, pp. 480–496, 2017.
  12. S. Olivier and T. S. Haut, “High-order mixed finite element variable eddington factor methods,” 2023. [Online]. Available: https://arxiv.org/abs/2301.04758
  13. ——, “High-order finite element second moment methods for linear transport,” Nuclear Science and Engineering, vol. 0, no. 0, pp. 1–36, 2023.
  14. B. S. Southworth, H. Park, S. Olivier, and T. Buvoli, “One-sweep moment-based semi-implicit-explicit integration for gray thermal radiation transport,” (in review), 2024.
  15. J. S. Warsa, T. A. Wareing, and J. E. Morel, “Fully consistent diffusion synthetic acceleration of linear discontinuous SN transport discretizations on unstructured tetrahedral meshes,” Nuclear Science and Engineering, vol. 141, no. 3, pp. 236–251, 2002. [Online]. Available: https://doi.org/10.13182/NSE141-236
  16. B. Cockburn and B. Dong, “An analysis of the minimal dissipation local discontinuous Galerkin method for convection–diffusion problems,” Journal of Scientific Computing, vol. 32, no. 2, p. 233–262, Aug. 2007.
  17. D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, “Unified analysis of discontinuous Galerkin methods for elliptic problems,” SIAM Journal on Numerical Analysis, vol. 39, no. 5, pp. 1749–1779, 2002.
  18. H. Park, “Toward asymptotic diffusion limit preserving high-order, low-order method,” Nuclear Science and Engineering, vol. 194, no. 11, pp. 952–970, 2020.
  19. T. Wareing, E. Larsen, and M. Adams, “Diffusion accelerated discontinous finite element schemes for the sn equations in slab and x,y geometries,” in Proceedings of the Topical Meeting on Advances in Mathematics, Computations and Reactor Physics.   The American Nuclear Society, 1991.
  20. Y. Wang and J. C. Ragusa, “Diffusion synthetic acceleration for high-order discontinuous finite element Sn transport schemes and application to locally refined unstructured meshes,” Nuclear Science and Engineering, vol. 166, no. 2, pp. 145–166, 2010. [Online]. Available: https://doi.org/10.13182/NSE09-46
  21. R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev, W. Pazner, M. Stowell, V. Tomov, J. Dahm, D. Medina, and S. Zampini, “MFEM: a modular finite element methods library,” Computers & Mathematics with Applications, Jul. 2020.
  22. R. D. Falgout and U. M. Yang, “Hypre: A library of high performance preconditioners,” in Proceedings of the International Conference on Computational Science-Part III, ser. ICCS ’02.   Berlin, Heidelberg: Springer-Verlag, 2002, p. 632–641.
  23. A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S. Woodward, “SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers,” ACM Transactions on Mathematical Software (TOMS), vol. 31, no. 3, pp. 363–396, 2005.
  24. X. S. Li and J. W. Demmel, “SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems,” ACM Trans. Mathematical Software, vol. 29, no. 2, pp. 110–140, June 2003.
  25. D. G. Anderson, “Iterative procedures for nonlinear integral equations,” J. ACM, vol. 12, no. 4, p. 547–560, oct 1965. [Online]. Available: https://doi.org/10.1145/321296.321305
  26. A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, “Scaling hypre’s multigrid solvers to 100,000 cores,” High Performance Scientific Computing: Algorithms and Applications, na, na, January 24, 2012, pp. 261-279, 4 2011. [Online]. Available: https://www.osti.gov/biblio/1117924

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com