Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lower Bounds for the Minimum Spanning Tree Cycle Intersection Problem (2404.17428v1)

Published 26 Apr 2024 in cs.DM

Abstract: Minimum spanning trees are important tools in the analysis and design of networks. Many practical applications require their computation, ranging from biology and linguistics to economy and telecommunications. The set of cycles of a network has a vector space structure. Given a spanning tree, the set of non-tree edges defines cycles that determine a basis. The intersection of two such cycles is the number of edges they have in common and the intersection number -- denoted $\cap(G)$ -- is the number of non-empty pairwise intersections of the cycles of the basis. The Minimum Spanning Tree Cycle Intersection problem consists in finding a spanning tree such that the intersection number is minimum. This problem is relevant in order to integrate discrete differential forms. In this paper, we present two lower bounds of the intersection number of an arbitrary connected graph $G=(V,E)$. In the first part, we prove the following statement: $$\frac{1}{2}\left(\frac{\nu2}{n-1} - \nu\right) \leq \cap(G),$$ where $n = |V|$ and $\nu$ is the \emph{cyclomatic number} of $G$. In the second part, based on some experimental results and a new observation, we conjecture the following improved tight lower bound: $$(n-1) \binom{q}{2} + q \ r\leq \cap(G),$$ where $2 \nu = q (n-1) + r$ is the integer division of $2 \nu$ and $n-1$. This is the first result in a general context, that is for an arbitrary connected graph.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com