Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Synchronized Stepwise Control of Firing and Learning Thresholds in a Spiking Randomly Connected Neural Network toward Hardware Implementation (2404.17241v1)

Published 26 Apr 2024 in cs.NE

Abstract: We propose hardware-oriented models of intrinsic plasticity (IP) and synaptic plasticity (SP) for spiking randomly connected recursive neural network (RNN). Although the potential of RNNs for temporal data processing has been demonstrated, randomness of the network architecture often causes performance degradation. Self-organization mechanism using IP and SP can mitigate the degradation, therefore, we compile these functions in a spiking neuronal model. To implement the function of IP, a variable firing threshold is introduced to each excitatory neuron in the RNN that changes stepwise in accordance with its activity. We also define other thresholds for SP that synchronize with the firing threshold, which determine the direction of stepwise synaptic update that is executed on receiving a pre-synaptic spike. We demonstrate the effectiveness of our model through simulations of temporal data learning and anomaly detection with a spiking RNN using publicly available electrocardiograms. Considering hardware implementation, we employ discretized thresholds and synaptic weights and show that these parameters can be reduced to binary if the RNN architecture is appropriately designed. This contributes to minimization of the circuit of the neuronal system having IP and SP.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets