Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Infinite dimensional Slow Manifolds for a Linear Fast-Reaction System (2404.17220v1)

Published 26 Apr 2024 in math.AP and math.DS

Abstract: The aim of this expository paper is twofold. We start with a concise overview of the theory of invariant slow manifolds for fast-slow dynamical systems starting with the work by Tikhonov and Fenichel to the most recent works on infinite-dimensional fast-slow systems. The main part focuses on a class of linear fast-reaction PDE, which are particular forms of fast-reaction systems. The first result shows the convergence of solutions of the linear system to the limit system as the time-scale parameter $\varepsilon$ goes to zero. Moreover, from the explicit solutions the slow manifold is constructed and the convergence to the critical manifold is proven. The subsequent result, then, states a generalized version of the Fenichel-Tikhonov theorem for linear fast-reaction systems.

Summary

We haven't generated a summary for this paper yet.