Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Explainable Deep Reinforcement Learning Model for Warfarin Maintenance Dosing Using Policy Distillation and Action Forging (2404.17187v1)

Published 26 Apr 2024 in cs.LG

Abstract: Deep Reinforcement Learning is an effective tool for drug dosing for chronic condition management. However, the final protocol is generally a black box without any justification for its prescribed doses. This paper addresses this issue by proposing an explainable dosing protocol for warfarin using a Proximal Policy Optimization method combined with Policy Distillation. We introduce Action Forging as an effective tool to achieve explainability. Our focus is on the maintenance dosing protocol. Results show that the final model is as easy to understand and deploy as the current dosing protocols and outperforms the baseline dosing algorithms.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets