Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Software Vulnerability Prediction in Low-Resource Languages: An Empirical Study of CodeBERT and ChatGPT (2404.17110v1)

Published 26 Apr 2024 in cs.SE, cs.CR, and cs.LG

Abstract: Background: Software Vulnerability (SV) prediction in emerging languages is increasingly important to ensure software security in modern systems. However, these languages usually have limited SV data for developing high-performing prediction models. Aims: We conduct an empirical study to evaluate the impact of SV data scarcity in emerging languages on the state-of-the-art SV prediction model and investigate potential solutions to enhance the performance. Method: We train and test the state-of-the-art model based on CodeBERT with and without data sampling techniques for function-level and line-level SV prediction in three low-resource languages - Kotlin, Swift, and Rust. We also assess the effectiveness of ChatGPT for low-resource SV prediction given its recent success in other domains. Results: Compared to the original work in C/C++ with large data, CodeBERT's performance of function-level and line-level SV prediction significantly declines in low-resource languages, signifying the negative impact of data scarcity. Regarding remediation, data sampling techniques fail to improve CodeBERT; whereas, ChatGPT showcases promising results, substantially enhancing predictive performance by up to 34.4% for the function level and up to 53.5% for the line level. Conclusion: We have highlighted the challenge and made the first promising step for low-resource SV prediction, paving the way for future research in this direction.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Triet H. M. Le (14 papers)
  2. M. Ali Babar (71 papers)
  3. Tung Hoang Thai (1 paper)
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com