Experimental evidence for the $ω^4$ tail of the nonphononic spectra of glasses (2404.16996v2)
Abstract: It is now established that glasses feature low-frequency, nonphononic excitations, in addition to phonons that follow Debye's vibrational density of state (VDoS). Extensive computer studies demonstrated that these nonphononic, glassy excitations follow a universal non-Debye VDoS ${\cal D}{\rm G}(\omega)!\sim!\omega4$, at low frequencies $\omega$. Yet, due to intrinsic difficulties in disentangling ${\cal D}{\rm G}(\omega)$ from the total VDoS ${\cal D}(\omega)$, which is experimentally accessible through various scattering techniques, the $\omega4$ tail of ${\cal D}{\rm G}(\omega)$ lacked direct experimental support. We develop a procedure to extract ${\cal D}{\rm G}(\omega)$ from the measured ${\cal D}(\omega)$, based on recent advances in understanding low-frequency excitations in glasses, and apply it to available datasets for diverse glasses. The resulting analysis shows that the $\omega4$ tail of the nonphononic vibrational spectra of glasses is nontrivially consistent with a broad range of experimental observations. It also further supports that ${\cal D}_{\rm G}(\omega)$ makes an additive contribution to ${\cal D}(\omega)$.
- W. Phillips, Tunneling states in amorphous solids, J. Low Temp. Phys. 7, 351 (1972).
- P. W. Anderson, B. I. Halperin, and C. M. Varma, Anomalous low-temperature thermal properties of glasses and spin glasses, Philos. Mag. 25, 1 (1972).
- R. O. Pohl, X. Liu, and E. Thompson, Low-temperature thermal conductivity and acoustic attenuation in amorphous solids, Rev. Mod. Phys. 74, 991 (2002).
- M. A. Ramos, Low-Temperature Thermal and Vibrational Properties of Disordered Solids (World Scientific, 2022).
- P. Chaikin and T. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 1995).
- M. Il’in, V. Karpov, and D. Parshin, Parameters of soft atomic potentials in glasses, Zh. Eksp. Teor. Fiz. 92, 291 (1987).
- W. Schirmacher, G. Ruocco, and T. Scopigno, Acoustic attenuation in glasses and its relation with the boson peak, Phys. Rev. Lett. 98, 025501 (2007).
- H. Shintani and H. Tanaka, Universal link between the boson peak and transverse phonons in glass, Nat. Mater. 7, 870 (2008).
- E. Lerner and E. Bouchbinder, Low-energy quasilocalized excitations in structural glasses, J. Chem. Phys. 155, 200901 (2021).
- E. Lerner, G. Düring, and E. Bouchbinder, Statistics and properties of low-frequency vibrational modes in structural glasses, Phys. Rev. Lett. 117, 035501 (2016).
- H. Mizuno, H. Shiba, and A. Ikeda, Continuum limit of the vibrational properties of amorphous solids, Proc. Natl. Acad. Sci. U.S.A. 114, E9767 (2017).
- C. Rainone, E. Bouchbinder, and E. Lerner, Pinching a glass reveals key properties of its soft spots, Proc. Natl. Acad. Sci. U.S.A. 117, 5228 (2020).
- E. Lerner and E. Bouchbinder, Nonphononic spectrum of two-dimensional structural glasses, J. Chem. Phys. 157, 166101 (2022).
- K. Shiraishi, H. Mizuno, and A. Ikeda, Non-phononic density of states of two-dimensional glasses revealed by random pinning, J. Chem. Phys. 158, 174502 (2023).
- E. Bouchbinder and E. Lerner, Universal disorder-induced broadening of phonon bands: from disordered lattices to glasses, New J. Phys. 20, 073022 (2018).
- E. Lerner and E. Bouchbinder, Boson-peak vibrational modes in glasses feature hybridized phononic and quasilocalized excitations, J. Chem. Phys. 158, 194503 (2023).
- L. Gartner and E. Lerner, Nonlinear modes disentangle glassy and Goldstone modes in structural glasses, SciPost Phys. 1, 016 (2016).
- G. Kapteijns, D. Richard, and E. Lerner, Nonlinear quasilocalized excitations in glasses: True representatives of soft spots, Phys. Rev. E 101, 032130 (2020).
- D. Richard, G. Kapteijns, and E. Lerner, Detecting low-energy quasilocalized excitations in computer glasses, Phys. Rev. E 108, 044124 (2023).
- M. A. Ramos, Are the calorimetric and elastic debye temperatures of glasses really different?, Philos. Mag. 84, 1313 (2004).
- E. Lerner, A. Moriel, and E. Bouchbinder, Enumerating low-frequency nonphononic vibrations in computer glasses, arXiv preprint arXiv:2404.12735 (2024).
- S. Yannopoulos, K. Andrikopoulos, and G. Ruocco, On the analysis of the vibrational boson peak and low-energy excitations in glasses, J. Non-Cryst. Solids 352, 4541 (2006).
- L. Wang, G. Szamel, and E. Flenner, Low-frequency excess vibrational modes in two-dimensional glasses, Phys. Rev. Lett. 127, 248001 (2021).
- A. Moriel, E. Lerner, and E. Bouchbinder, Boson peak in the vibrational spectra of glasses, Phys. Rev. Res. 6, 023053 (2024).
- Using Matlab’s minimization function ‘fminsearch’ [45].
- A. Rohatgi, Webplotdigitizer (2024).
- See Supplemental Materials attached to the PDF .
- A. Ninarello, L. Berthier, and D. Coslovich, Models and algorithms for the next generation of glass transition studies, Phys. Rev. X 7, 021039 (2017).
- G. Kapteijns, E. Bouchbinder, and E. Lerner, Unified quantifier of mechanical disorder in solids, Phys. Rev. E 104, 035001 (2021).
- The MathWorks Inc., Matlab version: 9.13.0.2166757 (R2022b) (2022).