2000 character limit reached
Explicit formulae for generalized Stirling and Eulerian numbers (2404.16982v1)
Published 25 Apr 2024 in math.CO
Abstract: In this article we generalize the $q$-difference operator due to Carlitz in order to derive explicit sum formulae for several extensions of Stirling numbers of the second kind, including complete homogeneous symmetric functions, complementary symmetric functions, $r$-Whitney numbers and elliptic analogues of rook, Stirling and Lah numbers. Furthermore, we generalize Carlitz' $q$-Eulerian numbers to a Lagrange polynomial extension. We define them by generalizing Worpitzky's identity appropriately, and derive a recursion and an explicit sum formulae. Special cases include $r$-Whitney Eulerian numbers and elliptic Eulerian numbers.
- Elliptic and q𝑞qitalic_q-analogs of the Fibonomial numbers. SIGMA Symmetry Integrability Geom. Methods Appl., 16:Paper No. 076, 16 pp., 2020.
- Dan Betea. Elliptically distributed lozenge tilings of a hexagon. SIGMA Symmetry Integrability Geom. Methods Appl., 14:Paper No. 032, 39 pp., 2018.
- q𝑞qitalic_q-Distributions on boxed plane partitions. Selecta Math. (N.S.), 16(4):731–789, 2010.
- Francesco Brenti. q𝑞qitalic_q-Eulerian polynomials arising from Coxeter groups. European J. Combin., 15(5):417–441, 1994.
- Leonard Carlitz. On abelian fields. Trans. Amer. Math. Soc., 35(1):122–136, 1933.
- Leonard Carlitz. q𝑞qitalic_q-Bernoulli numbers and polynomials. Duke Math. J., 15:987–1000, 1948.
- Leonard Carlitz. q𝑞qitalic_q-Bernoulli and Eulerian numbers. Trans. Amer. Math. Soc., 76:332–350, 1954.
- On the descent numbers and major indices for the hyperoctahedral group. Adv. in Appl. Math., 38(3):275–301, 2007.
- A Carlitz identity for the wreath product Cr≀𝔖n≀subscript𝐶𝑟subscript𝔖𝑛C_{r}\wr\mathfrak{S}_{n}italic_C start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ≀ fraktur_S start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. Adv. in Appl. Math., 47(2):199–215, 2011.
- Johann Cigler. Operatormethoden für q𝑞qitalic_q-Identitäten. Monatsh. Math., 88(2):87–105, 1979.
- Explicit formulas for the first form (q,r)𝑞𝑟(q,r)( italic_q , italic_r )-Dowling numbers and (q,r)𝑞𝑟(q,r)( italic_q , italic_r )-Whitney–Lah numbers. Eur. J. Pure Appl. Math., 14(1):65–81, 2021.
- The complementary symmetric functions: connection constants using negative sets. Adv. Math., 135(2):207–219, 1998.
- Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2nd edition, 2004.
- Schur functions, Good’s identity, and hypergeometric series well poised in SU(n)𝑆𝑈𝑛{SU}(n)italic_S italic_U ( italic_n ). Adv. in Math., 48(2):177–188, 1983.
- Elliptic stirling numbers of the second and first kind. In preparation.
- Josef Küstner. Elliptic Combinatorics of Lattice Paths, Domino Tilings and Rook Placements. University of Vienna, 2022. PhD Thesis.
- Lattice paths and negatively indexed weight-dependent binomial coefficients. Annals of Combinatorics, 27:1–39, 2023.
- Some combinatorial identities of the r𝑟ritalic_r-Whitney-Eulerian numbers. Appl. Anal. Discrete Math., 13(2):378–398, 2019.
- István Mező. A new formula for the Bernoulli polynomials. Results Math., 58(3-4):329–335, 2010.
- Louis M. Milne-Thomson. The Calculus Of Finite Differences. Macmillan And Company., Limited, 1933. PhD Thesis.
- T. Kyle Petersen. Eulerian numbers. Birkhäuser/Springer, New York, 2015. With a foreword by Richard Stanley.
- Eulerian numbers associated with arithmetical progressions. Electron. J. Combin., 25(1):Paper No. 1.48, 12 pp., 2018.
- Rook theory, generalized Stirling numbers and (p,q)𝑝𝑞(p,q)( italic_p , italic_q )-analogues. Electron. J. Combin., 11(1):Research Paper 84, 48 pp., 2004.
- Hjalmar Rosengren. Elliptic hypergeometric functions. In Howard S. Cohl and Mourad E. H. Ismail, editors, Lectures on Orthogonal Polynomials and Special Functions, pages 213–279. Cambridge University Press, Cambridge, 2020.
- Gian-Carlo Rota, editor. Finite operator calculus. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. With the collaboration of P. Doubilet, C. Greene, D. Kahaner, A. Odlyzko and R. Stanley.
- q𝑞qitalic_q-Stirling numbers in type B. European Journal of Combinatorics, 118:103899, 2024.
- Michael J. Schlosser. Elliptic enumeration of nonintersecting lattice paths. J. Combin. Theory Ser. A, 114(3):505–521, 2007.
- Michael J. Schlosser. A noncommutative weight-dependent generalization of the binomial theorem. Sém. Lothar. Combin., 81:Art. B81j, 24 pp., 2020.
- Michael J. Schlosser. An elliptic extension of the multinomial theorem. Preprint, arXiv:2307.12921, 2023.
- Log-concavity results for a biparametric and an elliptic extension of the q𝑞qitalic_q-binomial coefficients. Int. J. Number Theory, 17(3):787–804, 2021.
- Basic hypergeometric summations from rook theory. In Analytic number theory, modular forms and q𝑞qitalic_q-hypergeometric series, volume 221 of Springer Proc. Math. Stat., pages 677–692. Springer, Cham, 2017.
- Elliptic rook and file numbers. Electron. J. Combin., 24(1):Paper No. 1.31, 47 pp., 2017.
- Richard P. Stanley. Enumerative Combinatorics 2. Cambridge Univ. Press, Cambridge, 2001.
- Heinrich Weber. Elliptische Functionen und algebraische Zahlen. Vieweg-Verlag, Braunschweig, 1891.