Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal fragmentation in annihilation reactions with constrained kinetics (2404.16950v2)

Published 25 Apr 2024 in cond-mat.stat-mech, cond-mat.quant-gas, and nlin.CG

Abstract: In reaction-diffusion models of annihilation reactions in low dimensions, single-particle dynamics provides a bottleneck for reactions, leading to an anomalously slow approach to the empty state. Here, we construct a reaction model with a reciprocal bottleneck on particle dynamics where single-particle motion conserves the center of mass. We show that such a constrained reaction-diffusion dynamics does not approach an empty state but freezes at late times in a state with fragmented particle clusters, and that the late-time dynamics and asymptotic density are universal. Our setup thus constitutes a minimal model for the fragmentation of a one-dimensional lattice into independent particle clusters, and we provide exact results for the final density in the large-reaction rate limit. We suggest that the universal reaction dynamics could be observable in experiments with cold atoms or in the Auger recombination of exciton gases.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (Third Edition), North-Holland Personal Library (Elsevier, Amsterdam, 2007).
  2. V. Volpert and S. Petrovskii, Physics of Life Reviews 6, 267 (2009).
  3. P. Meakin, Annual Review of Physical Chemistry 39, 237 (1988).
  4. F. Sciortino and P. Tartaglia, Advances in Physics 54, 471 (2005).
  5. P. G. de Gennes, The Journal of Chemical Physics 76, 3322 (1982).
  6. D. Toussaint and F. Wilczek, J. Chem. Phys. 78, 2642 (1983).
  7. F. Family and J. G. Amar, Journal of Statistical Physics 65, 1235 (1991).
  8. J. Cardy, Renormalisation group approach to reaction-diffusion problems (1996), arXiv:cond-mat/9607163 .
  9. L. Chen and M. W. Deem, Phys. Rev. E 65, 011109 (2001).
  10. S. Yuste and K. Lindenberg, Chemical Physics 284, 169 (2002).
  11. I. M. Sokolov, M. G. W. Schmidt, and F. Sagués, Phys. Rev. E 73, 031102 (2006).
  12. J. H. Han, E. Lake, and S. Ro, Phys. Rev. Lett. 132, 137102 (2024).
  13. V. Khemani, M. Hermele, and R. Nandkishore, Physical Review B 101, 174204 (2020).
  14. A. Morningstar, V. Khemani, and D. A. Huse, Phys. Rev. B 101, 214205 (2020).
  15. D. T. Gillespie, Annu. Rev. Phys. Chem. 58, 35 (2007).
  16. S.-C. Park, Phys. Rev. E 72, 036111 (2005).
  17. A. Weddig Karlsson, “Simulating nondiffusive dynamics in reaction-diffusion systems”, Master’s thesis, Chalmers University of Technology (2023).
  18. OEIS Foundation Inc., Entry A000029 in The On-Line Encyclopedia of Integer Sequences (2024), published electronically at http://oeis.org.

Summary

We haven't generated a summary for this paper yet.