Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparing advanced-era interferometric gravitational-wave detector network configurations: sky localization and source properties (2404.16949v1)

Published 25 Apr 2024 in gr-qc and astro-ph.HE

Abstract: The expansion and upgrade of the global network of ground-based gravitational wave detectors promises to improve our capacity to infer the sky-localization of transient sources, enabling more effective multi-messenger follow-ups. At the same time, the increase in the signal-to-noise ratio of detected events allows for more precise estimates of the source parameters. This study aims to assess the performance of advanced-era networks of ground-based detectors, focusing on the Hanford, Livingston, Virgo, and KAGRA instruments. We use full Bayesian parameter estimation procedures to predict the scientific potential of a network. Assuming a fixed LIGO configuration, we find that the addition of the Virgo detector is beneficial to the sky localization starting from a binary neutron star horizon distance of 20 Mpc and improves significantly from 40 Mpc onwards for both a single and double LIGO detector network, reducing the inferred mean sky-area by up to 95%. Similarly, the KAGRA detector tightens the constraints, starting from a sensitivity range of 10 Mpc. Looking at highly-spinning binary black holes, we find significant improvements with increasing sensitivity in constraining the intrinsic source parameters when adding Virgo to the two LIGO detectors. Finally, we also examine the impact of the low-frequency cut-off data on the signal-to-noise ratio. We find that existing 20 Hz thresholds are sufficient and propose a metric to monitor this to study detector performance. Our findings quantify how future enhancements in detector sensitivity and network configurations will improve the localization of gravitational wave sources and allow for more precise identification of their intrinsic properties.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (70)
  1. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 061102 (2016a), arXiv:1602.03837 [gr-qc] .
  2. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 119, 161101 (2017a), arXiv:1710.05832 [gr-qc] .
  3. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. D 100, 104036 (2019a), arXiv:1903.04467 [gr-qc] .
  4. R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. D 103, 122002 (2021a), arXiv:2010.14529 [gr-qc] .
  5. R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA), “Tests of General Relativity with GWTC-3,”  (2021b), arXiv: 2112.06861, arXiv:2112.06861 [gr-qc] .
  6. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X 9, 011001 (2019b), arXiv:1805.11579 [gr-qc] .
  7. B. Margalit and B. D. Metzger, Astrophys. J. Lett. 850, L19 (2017), arXiv:1710.05938 [astro-ph.HE] .
  8. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 121, 161101 (2018a), arXiv:1805.11581 [gr-qc] .
  9. J. Aasi et al. (LIGO Scientific), Class. Quant. Grav. 32, 074001 (2015), arXiv:1411.4547 [gr-qc] .
  10. F. Acernese et al. (Virgo), Class. Quant. Grav. 32, 024001 (2015), arXiv:1408.3978 [gr-qc] .
  11. T. Akutsu et al. (KAGRA), PTEP 2021, 05A101 (2021), arXiv:2005.05574 [physics.ins-det] .
  12. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X9, 031040 (2019c), arXiv:1811.12907 [astro-ph.HE] .
  13. R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X 11, 021053 (2021c), arXiv:2010.14527 [gr-qc] .
  14. C. S. Unnikrishnan, Int. J. Mod. Phys. D 22, 1341010 (2013), arXiv:1510.06059 [physics.ins-det] .
  15. D. Reitze et al., “Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO,”  (2019), arXiv, 1907.04833 [astro-ph.IM] .
  16. B. F. Schutz, Class. Quant. Grav. 28, 125023 (2011), arXiv:1102.5421 [astro-ph.IM] .
  17. B. P. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. Lett. 882, L24 (2019d), arXiv:1811.12940 [astro-ph.HE] .
  18. R. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. Lett. 913, L7 (2021d), arXiv:2010.14533 [astro-ph.HE] .
  19. M. R. Drout et al., Science 358, 1570 (2017), arXiv:1710.05443 [astro-ph.HE] .
  20. H. Koehn et al., “An overview of existing and new nuclear and astrophysical constraints on the equation of state of neutron-rich dense matter,”  (2024), lA-UR-24-20420, arXiv:2402.04172 [astro-ph.HE] .
  21. M. J. Graham et al., Phys. Rev. Lett. 124, 251102 (2020), arXiv:2006.14122 [astro-ph.HE] .
  22. Z.-H. Zhou and K. Wang, Astrophys. J. Lett. 958, L12 (2023), arXiv:2310.15832 [astro-ph.HE] .
  23. F. J. Masci et al., Publ. Astron. Soc. Pac. 131, 018003 (2018).
  24. M. J. Graham et al., Publ. Astron. Soc. Pac. 131, 078001 (2019), arXiv:1902.01945 [astro-ph.IM] .
  25. v. Ivezić et al. (LSST), Astrophys. J. 873, 111 (2019), arXiv:0805.2366 [astro-ph] .
  26. P. A. Abell et al. (LSST Science, LSST Project), “LSST Science Book, Version 2.0,”  (2009), fERMILAB-TM-2495-A, SLAC-R-1031, arXiv:0912.0201 [astro-ph.IM] .
  27. S. Fairhurst, New J. Phys. 11, 123006 (2009), [Erratum: New J.Phys. 13, 069602 (2011)], arXiv:0908.2356 [gr-qc] .
  28. S. Fairhurst, Class. Quant. Grav. 28, 105021 (2011), arXiv:1010.6192 [gr-qc] .
  29. C. P. L. Berry et al., Astrophys. J. 804, 114 (2015), arXiv:1411.6934 [astro-ph.HE] .
  30. M. Bailes et al., “Ground-Based Gravitational-Wave Astronomy in Australia: 2019 White Paper,”  (2019), astro-ph.IM, arXiv:1912.06305 .
  31. L. Wen and Y. Chen, Phys. Rev. D 81, 082001 (2010), arXiv:1003.2504 [astro-ph.CO] .
  32. S. R. Shukla, L. Pathak,  and A. S. Sengupta, “How I wonder where you are: pinpointing coalescing binary neutron star sources with the IGWN, including LIGO-Aundha,”  (2023), lIGO DCC number: LIGO-P2300401, arXiv:2311.15695 [gr-qc] .
  33. L. P. Singer et al., Astrophys. J. 795, 105 (2014), arXiv:1404.5623 [astro-ph.HE] .
  34. R. W. et al., “Ligo document t1000251-v1,”  (2010), https://dcc.ligo.org/cgibin/DocDB/ShowDocument? docid=11604.
  35. W. Zhao and L. Wen, Phys. Rev. D 97, 064031 (2018), arXiv:1710.05325 [astro-ph.CO] .
  36. E. D. Hall and M. Evans, Class. Quant. Grav. 36, 225002 (2019), arXiv:1902.09485 [astro-ph.IM] .
  37. H. Abe et al. (KAGRA), Galaxies 10, 63 (2022).
  38. LIGO Scientific Collaboration, “LIGO Observer Documentation,”  (2023), accessed on 24/1/2024.
  39. R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. D 102, 043015 (2020a), arXiv:2004.08342 [astro-ph.HE] .
  40. R. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. Lett. 896, L44 (2020b), arXiv:2006.12611 [astro-ph.HE] .
  41. R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 125, 101102 (2020c), arXiv:2009.01075 [gr-qc] .
  42. R. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. Lett. 900, L13 (2020d), arXiv:2009.01190 [astro-ph.HE] .
  43. M. Hannam et al., Nature 610, 652 (2022), arXiv:2112.11300 [gr-qc] .
  44. G. Fragione and B. Kocsis, Mon. Not. Roy. Astron. Soc. 486, 4781 (2019), arXiv:1903.03112 [astro-ph.GA] .
  45. I. Mandel and S. E. de Mink, Mon. Not. Roy. Astron. Soc. 458, 2634 (2016), arXiv:1601.00007 [astro-ph.HE] .
  46. S. E. de Mink and I. Mandel, Mon. Not. Roy. Astron. Soc. 460, 3545 (2016), arXiv:1603.02291 [astro-ph.HE] .
  47. A. Dhani, S. Völkel, A. Buonanno, H. Estelles, J. Gair, H. P. Pfeiffer, L. Pompili,  and A. Toubiana, “Systematic Biases in Estimating the Properties of Black Holes Due to Inaccurate Gravitational-Wave Models,”  (2024), gr-qc, arXiv:2404.05811 .
  48. A. Vecchio, Phys. Rev. D 70, 042001 (2004), arXiv:astro-ph/0304051 .
  49. D. Davis et al. (LIGO), Class. Quant. Grav. 38, 135014 (2021), arXiv:2101.11673 [astro-ph.IM] .
  50. B. P. Abbott et al. (LIGO Scientific, Virgo), Class. Quant. Grav. 37, 055002 (2020e), arXiv:1908.11170 [gr-qc] .
  51. H. Abe et al. (KAGRA), PTEP 2023, 10A101 (2023), arXiv:2203.07011 [astro-ph.IM] .
  52. F. Acernese et al. (VIRGO), J. Phys. Conf. Ser. 2429, 012040 (2023).
  53. B. Willke et al., Class. Quant. Grav. 19, 1377 (2002).
  54. G. Ashton et al., Astrophys. J. Suppl. 241, 27 (2019), arXiv:1811.02042 [astro-ph.IM] .
  55. I. M. Romero-Shaw et al., Mon. Not. Roy. Astron. Soc. 499, 3295 (2020), arXiv:2006.00714 [astro-ph.IM] .
  56. LIGO Scientific Collaboration, “LIGO Algorithm Library - LALSuite,” free software (GPL) (2018).
  57. P. Whittle, Uppsala: Almqvist & Wiksells Boktryckeri AB (1951).
  58. J. S. Speagle, Mon. Not. Roy. Astron. Soc. 493, 3132 (2020), arXiv:1904.02180 [astro-ph.IM] .
  59. J. Skilling, AIP Conf. Proc. 735, 395 (2004).
  60. “LIGO/Virgo Skymap Software,” https://lscsoft.docs.ligo.org/ligo.skymap/ (2022), accessed: December 10, 2022.
  61. G. Pratten et al., Phys. Rev. D 103, 104056 (2021), arXiv:2004.06503 [gr-qc] .
  62. B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 119, 161101 (2017e), arXiv:1710.05832 [gr-qc] .
  63. R. C. P. Casella George and W. M. T., Institute of Mathematical Statistics pp.342-347 (2004), 10.1214/lnms/1196285403.
  64. P. C. Peters and J. Mathews, Phys. Rev. 131, 435 (1963).
  65. L. S. Finn, Phys. Rev. D 46, 5236 (1992), arXiv:gr-qc/9209010 .
  66. J. Veitch et al., Phys. Rev. D D91, 042003 (2015), arXiv:1409.7215 [gr-qc] .
  67. B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 116, 241102 (2016c), arXiv:1602.03840 [gr-qc] .
  68. B. P. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. Lett. 892, L3 (2020f), arXiv:2001.01761 [astro-ph.HE] .
  69. T. Dal Canton and I. W. Harry, “Designing a template bank to observe compact binary coalescences in Advanced LIGO’s second observing run,”  (2017), lIGO-P1700085, arXiv:1705.01845 [gr-qc] .
  70. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 119, 141101 (2017f), arXiv:1709.09660 [gr-qc] .

Summary

We haven't generated a summary for this paper yet.