Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new way of deriving implicit Runge-Kutta methods based on repeated integrals (2404.16665v2)

Published 25 Apr 2024 in math.NA and cs.NA

Abstract: Runge-Kutta methods have an irreplaceable position among numerical methods designed to solve ordinary differential equations. Especially, implicit ones are suitable for approximating solutions of stiff initial value problems. We propose a new way of deriving coefficients of implicit Runge-Kutta methods. This approach based on repeated integrals yields both new and well-known Butcher's tableaux. We discuss the properties of newly derived methods and compare them with standard collocation implicit Runge-Kutta methods in a series of numerical experiments, including the Prothero-Robinson problem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. Explicit methods in solving stiff ordinary differential equations. Int. J. Comput. Math. 81(11): 1407–1415, 2004.
  2. R. L. Burden, J. D. Faires. Numerical Analysis, 5th edition. PWS-Kent Publishing Company, 1993.
  3. J. C. Butcher. A history of Runge-Kutta methods. Appl. Numer. Math. 20: 247–260, 1996.
  4. J. C. Butcher. Coefficients for the Study of Runge-Kutta Integration Processes. J. Aust. Math. Soc 3: 185–201, 1963.
  5. J. C. Butcher. Integration Processes Based on Radau Quadrature Formulas. Math. Comput. 18: 233–244, 1964.
  6. J. C. Butcher. Implicit Runge-Kutta Processes. Math. Comput. 18: 50–64, 1964.
  7. J. C. Butcher. Numerical Methods for Ordinary Differential Equations. Wiley, 2003.
  8. J. C. Butcher. Numerical Methods for Ordinary Differential Equations. 2nd edition. Wiley, 2008.
  9. J. C. Butcher. The non-existence of ten stage eighth order explicit Runge-Kutta methods. BIT 25: 521–540, 1985.
  10. A. L. Cauchy. Trente-Cinquiéme Leo̧n. In: Résum é des leo̧ns données á l’Ecole royale polytechnique sur le calcul infinitésimal. Imprimerie Royale, Paris 1823.
  11. On the Lambert W Function. Adv. Comput. Math. 5: 329–359, 1996.
  12. J. R. Dormand. Numerical Methods for Differential Equations. Boca Raton CRC Press, 1996.
  13. L. Ferracina, M.N. Spijker. Strong stability of singly-diagonally-implicit Runge-Kutta methods. Appl. Numer. Math. 58(11): 1675–1686, 2008.
  14. G. B. Folland. Advanced Calculus. Prentice Hall, 2002.
  15. A review of recent development in solving ODEs. Comput. Surv. 17(1): 5–47, 1985.
  16. Solving ordinary differential equations I.: Nonstiff problems. Springer Series in Computational Mathematics 8, Springer, 1993.
  17. E. Hairer, G. Wanner. Solving ordinary differential equations II.: Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics 14, Springer, 1996.
  18. C. Kennedy, M. Carpenter. Diagonally Implicit Runge-Kutta Methods for Ordinary Differential Equations. A Review. NASA/TM-2016-219173. NASA Langley Research Center, 2016.
  19. New optimized implicit-explicit Runge-Kutta methods with applications to the hyperbolic conservation laws. Journal of Computational Physics 446, 2021.
  20. H. Ramos. A non-standard explicit integration scheme for initial-value problems. Appl. Math. Comput. 189(1): 710–718, 2007.
  21. J. A. dit Sandretto. Runge–Kutta Theory and Constraint Programming. arXiv preprint No. 1804.04847, 2018.
  22. L. M. Skvortsov. A fifth order implicit method for the numerical solution of differential algebraic equations. Comput. Math. and Math. Phys. 55: 962–968, 2015.
  23. K. Tvrdá, M. Minárov a. Computation of definite integral over repeated integral. Tatra Mt. Math. Publ. 72: 141–154, 2018.
  24. K. Tvrdá, P. Novotný. Modifications of Newton-Cotes formulas for computation of repeated integrals and derivatives. Czech. Math. J. 73(148): 1175–1188, 2023.
  25. A novel class of collocation methods based on the weighted integral form of ODEs. Comp. Appl. Math. 40(135), 2021.
  26. Y. Ying, N. Yaacob. Implicit 7-stage Tenth Order Runge-Kutta Methods Based on Gauss-Kronrod-Lobatto Quadrature Formula. MATEMATIKA: MJIAM 31(1): 93–109, 2015.
  27. D. W. Zingg, T.T. Chisholm. Runge-Kutta methods for linear ordinary differential equations. Appl. Numer. Math. 31: 227–238, 1999.
  28. Z. Zlatev. Modified Diagonally Implicit Runge–Kutta Methods. SIAM J. Sci. Stat. Comp. 2(3): 321–334, 1981.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com