Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A generalization of quantum pair state transfer (2404.16654v2)

Published 25 Apr 2024 in quant-ph and math.CO

Abstract: An $s$-pair state in a graph is a quantum state of the form $\mathbf{e}_u+s\mathbf{e}_v$, where $u$ and $v$ are vertices in the graph and $s$ is a non-zero complex number. If $s=-1$ (resp., $s=1$), then such a state is called a pair state (resp. plus state). In this paper, we develop the theory of perfect $s$-pair state transfer in continuous quantum walks, where the Hamiltonian is taken to be the adjacency, Laplacian or signless Laplacian matrix of the graph. We characterize perfect $s$-pair state transfer in complete graphs, cycles and antipodal distance-regular graphs admitting vertex perfect state transfer. We construct infinite families of graphs with perfect $s$-pair state transfer using quotient graphs and graphs that admit fractional revival. We provide necessary and sufficient conditions such that perfect state transfer between vertices in the line graph relative to the adjacency matrix is equivalent to perfect state transfer between the plus states formed by corresponding edges in the graph relative to the signless Laplacian matrix. Finally, we characterize perfect state transfer between vertices in the line graphs of Cartesian products relative to the adjacency matrix.

Summary

We haven't generated a summary for this paper yet.