Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ReliK: A Reliability Measure for Knowledge Graph Embeddings (2404.16572v1)

Published 25 Apr 2024 in cs.SI

Abstract: Can we assess a priori how well a knowledge graph embedding will perform on a specific downstream task and in a specific part of the knowledge graph? Knowledge graph embeddings (KGEs) represent entities (e.g., "da Vinci," "Mona Lisa") and relationships (e.g., "painted") of a knowledge graph (KG) as vectors. KGEs are generated by optimizing an embedding score, which assesses whether a triple (e.g., "da Vinci," "painted," "Mona Lisa") exists in the graph. KGEs have been proven effective in a variety of web-related downstream tasks, including, for instance, predicting relationships among entities. However, the problem of anticipating the performance of a given KGE in a certain downstream task and locally to a specific individual triple, has not been tackled so far. In this paper, we fill this gap with ReliK, a Reliability measure for KGEs. ReliK relies solely on KGE embedding scores, is task- and KGE-agnostic, and requires no further KGE training. As such, it is particularly appealing for semantic web applications which call for testing multiple KGE methods on various parts of the KG and on each individual downstream task. Through extensive experiments, we attest that ReliK correlates well with both common downstream tasks, such as tail or relation prediction and triple classification, as well as advanced downstream tasks, such as rule mining and question answering, while preserving locality.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Maximilian K. Egger (1 paper)
  2. Wenyue Ma (3 papers)
  3. Davide Mottin (26 papers)
  4. Panagiotis Karras (27 papers)
  5. Ilaria Bordino (4 papers)
  6. Francesco Gullo (11 papers)
  7. Aris Anagnostopoulos (16 papers)

Summary

We haven't generated a summary for this paper yet.