Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-Domain Spatial Matching for Camera and Radar Sensor Data Fusion in Autonomous Vehicle Perception System (2404.16548v1)

Published 25 Apr 2024 in cs.CV

Abstract: In this paper, we propose a novel approach to address the problem of camera and radar sensor fusion for 3D object detection in autonomous vehicle perception systems. Our approach builds on recent advances in deep learning and leverages the strengths of both sensors to improve object detection performance. Precisely, we extract 2D features from camera images using a state-of-the-art deep learning architecture and then apply a novel Cross-Domain Spatial Matching (CDSM) transformation method to convert these features into 3D space. We then fuse them with extracted radar data using a complementary fusion strategy to produce a final 3D object representation. To demonstrate the effectiveness of our approach, we evaluate it on the NuScenes dataset. We compare our approach to both single-sensor performance and current state-of-the-art fusion methods. Our results show that the proposed approach achieves superior performance over single-sensor solutions and could directly compete with other top-level fusion methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. doi:10.1109/TELFOR.2018.8612054.
  2. doi:10.3390/s22072542. URL https://www.mdpi.com/1424-8220/22/7/2542
  3. doi:10.1109/ICIF.2010.5712116.
  4. doi:10.1109/JSTQE.2020.3022948.
  5. doi:10.1109/CVPR42600.2020.01164.
  6. doi:10.1109/CVPR.2016.91.
  7. doi:10.1109/CVPR.2017.690.
  8. arXiv:1804.02767. URL http://arxiv.org/abs/1804.02767
  9. arXiv:2004.10934. URL https://arxiv.org/abs/2004.10934
  10. doi:10.1109/CVPR.2018.00913.
  11. arXiv:1807.06521. URL http://arxiv.org/abs/1807.06521
  12. arXiv:1911.08287. URL http://arxiv.org/abs/1911.08287
  13. doi:10.1109/ICCV.2017.324.
  14. arXiv:1905.11946. URL http://arxiv.org/abs/1905.11946
  15. doi:10.1109/CVPR42600.2020.01079.
  16. arXiv:2104.00298. URL https://arxiv.org/abs/2104.00298
  17. arXiv:1707.06484. URL http://arxiv.org/abs/1707.06484
  18. doi:10.1109/ICCV.2019.00667.
  19. doi:10.1109/ICCVW54120.2021.00107.
  20. doi:10.1109/CVPR.2017.16.
  21. doi:10.1109/CVPR.2019.00086.
  22. doi:10.1109/CVPR.2018.00472.
  23. doi:10.1109/CVPR.2019.01298.
  24. doi:10.1109/CVPR42600.2020.01054.
  25. arXiv:2209.14499, doi:10.48550/arXiv.2209.14499. URL https://doi.org/10.48550/arXiv.2209.14499
  26. doi:10.1109/IROS.2018.8594049.
  27. doi:10.1109/CVPR.2017.691.
  28. doi:10.1109/CVPR.2018.00033.
  29. doi:10.1109/CVPR42600.2020.00466.
  30. doi:10.1109/CVPRW.2019.00162.
  31. doi:10.1016/j.robot.2018.11.002.
  32. doi:10.1109/IVS.2018.8500549.
  33. doi:10.1109/SDF.2019.8916629.
  34. doi:10.1109/WACV48630.2021.00157.
  35. doi:10.1109/ICCV.2017.74.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com