Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Concentration estimates for SPDEs driven by fractional Brownian motion (2404.16485v2)

Published 25 Apr 2024 in math.PR

Abstract: The main goal of this work is to provide sample-path estimates for the solution of slowly time-dependent SPDEs perturbed by a cylindrical fractional Brownian motion. Our strategy is similar to the approach by Berglund and Nader for space-time white noise. However, the setting of fractional Brownian motion does not allow us to use any martingale methods. Using instead optimal estimates for the probability that the supremum of a Gaussian process exceeds a certain level, we derive concentration estimates for the solution of the SPDE, provided that the Hurst index $H$ of the fractional Brownian motion satisfies $H>\frac14$. As a by-product, we also obtain concentration estimates for one-dimensional fractional SDEs valid for any $H\in(0,1)$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. N. Berglund and B. Gentz. Pathwise description of dynamic pitchfork bifurcations with additive noise. Probability Theory Related Fields. 122: 341–388, 2002.
  2. N. Berglund and R. Nader. Stochastic resonance in stochastic PDEs. SPDEs: Analysis and Computation. 11(1): 348–387, 2023.
  3. N. Berglund and R. Nader. Concentration estimates for slowly time-dependent singular SPDEs on the two-dimensional torus. Electronic Journal of Probability. 29: 1–35 (2024).
  4. A. Blessing (Neamţu) and D. Blömker. Finite-time Lyapunov exponents for SPDEs with fractional noise. arXiv:2309.12189, 2023.
  5. D. Blömker and A. Neamţu. Amplitude equations for SPDEs driven by fractional additive noise with small Hurst parameter. Stoch. Dyn., 22(03):2240013, 2022.
  6. Hitting times for Gaussian processes. Ann. Probab., 319–330, 2008.
  7. T.E. Duncan, B. Pasik-Duncan and B. Maslowski. Fractional Brownian motion and stochastic equations in Hilbert spaces. Stoch. Dyn., 2(2):225–250, 2002.
  8. T.E. Duncan, B. Pasik-Duncan and B. Maslowski. Linear stochastic equations in a Hilbert space with a fractional Brownian motion. Book chapter (pp. 201–221) in Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queueing Networks, and Manufacturing Systems, 2006.
  9. T.E. Duncan, B. Pasik-Duncan and B. Maslowski. Semilinear stochastic equations in a Hilbert space with a fractional Brownian motion. SIAM. J. Math. Anal., 40(6):2286–2315, 2009.
  10. K. Eichinger, C. Kuehn and A. Neamţu. Sample Paths Estimates for Stochastic Fast-Slow Systems driven by Fractional Brownian Motion. J. Stat. Phys, 179(5):1222–1266, 2020.
  11. M. Hairer and X.-M. Li. Averaging dynamics driven by fractional Brownian motion. Ann. Probab., 48(4):1826–1860, 2020.
  12. M. Hairer and A. Ohasi. Ergodic theory for SDEs with extrinsic memory. Ann. Probab., 35(5):1950–1977, 2007.
  13. K. Kubilius, Y. Mishura and K. Ralchenko. Parameter Estimation in Fractional Diffusion Models, Springer 2017.
  14. C. Kuehn, K. Lux and A. Neamţu. Warning Signs for Non-Markovian Bifurcations: Color Blindness and Scaling Laws. Proc. Royal Soc. A, 478:20210740, 2022.
  15. F.W.J. Olver. Asymptotics and Special Functions. Academic Press, 1974.
  16. A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer Applied Mathematical Series. Springer–Verlag, Berlin, 1983.
  17. V.I. Piterbarg. Asymptotic Methods in the Theory of Gaussian Processes and Fields. American Mathematical Society, 1996.
  18. L.C.G. Rogers. Arbitrage with Fractional Brownian Motion. Wiley, 2002.
  19. D. Slepian. The one-side barrier problem for Gaussian noise. Bell System Tech., 41(2):436– 501, 1962.
  20. S. Tindel, C.A. Tudor and F. Viens. Stochastic evolution equations with fractional Brownian motion. Probab. Theory. Rel. Fields, 127:186–204, 2003.
  21. M. Weiss. Single-particle tracking data reveal anticorrelated fractional Brownian motion in crowded fluids. Phys. Rev. E, 88(1):010101, 2013.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com