Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Joint CSI Feedback and Multiuser Precoding for MIMO OFDM Systems (2404.16289v1)

Published 25 Apr 2024 in cs.IT, eess.SP, and math.IT

Abstract: The design of precoding plays a crucial role in achieving a high downlink sum-rate in multiuser multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) systems. In this correspondence, we propose a deep learning based joint CSI feedback and multiuser precoding method in frequency division duplex systems, aiming at maximizing the downlink sum-rate performance in an end-to-end manner. Specifically, the eigenvectors of the CSI matrix are compressed using deep joint source-channel coding techniques. This compression method enhances the resilience of the feedback CSI information against degradation in the feedback channel. A joint multiuser precoding module and a power allocation module are designed to adjust the precoding direction and the precoding power for users based on the feedback CSI information. Experimental results demonstrate that the downlink sum-rate can be significantly improved by using the proposed method, especially in scenarios with low signal-to-noise ratio and low feedback overhead.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. J. Guo, C.-K. Wen, S. Jin, and G. Y. Li, “Overview of deep learning-based csi feedback in massive mimo systems,” IEEE Transactions on Communications, vol. 70, no. 12, pp. 8017–8045, 2022.
  2. C.-K. Wen, W.-T. Shih, and S. Jin, “Deep learning for massive mimo csi feedback,” IEEE Wireless Communications Letters, vol. 7, no. 5, pp. 748–751, 2018.
  3. J. Guo, C.-K. Wen, S. Jin, and G. Y. Li, “Convolutional neural network-based multiple-rate compressive sensing for massive mimo csi feedback: Design, simulation, and analysis,” IEEE Transactions on Wireless Communications, vol. 19, no. 4, pp. 2827–2840, 2020.
  4. X. Bi, S. Li, C. Yu, and Y. Zhang, “A novel approach using convolutional transformer for massive mimo csi feedback,” IEEE Wireless Communications Letters, vol. 11, no. 5, pp. 1017–1021, 2022.
  5. M. Chen, J. Guo, C.-K. Wen, S. Jin, G. Y. Li, and A. Yang, “Deep learning-based implicit csi feedback in massive mimo,” IEEE Transactions on Communications, vol. 70, no. 2, pp. 935–950, 2021.
  6. J. Xu, B. Ai, N. Wang, and W. Chen, “Deep joint source-channel coding for csi feedback: An end-to-end approach,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 1, pp. 260–273, 2022.
  7. M. Zhang, J. Gao, and C. Zhong, “A deep learning-based framework for low complexity multiuser mimo precoding design,” IEEE Transactions on Wireless Communications, vol. 21, no. 12, pp. 11 193–11 206, 2022.
  8. K. Wei, J. Xu, W. Xu, N. Wang, and D. Chen, “Distributed neural precoding for hybrid mmwave mimo communications with limited feedback,” IEEE Communications Letters, vol. 26, no. 7, pp. 1568–1572, 2022.
  9. F. Sohrabi, K. M. Attiah, and W. Yu, “Deep learning for distributed channel feedback and multiuser precoding in fdd massive mimo,” IEEE Transactions on Wireless Communications, vol. 20, no. 7, pp. 4044–4057, 2021.
  10. Z. Hu, J. Guo, G. Liu, H. Zheng, and J. Xue, “Mrfnet: A deep learning-based csi feedback approach of massive mimo systems,” IEEE Communications Letters, vol. 25, no. 10, pp. 3310–3314, 2021.
  11. 3GPP, “3rd generation partnership project; technical specification group radio access network; study on 3d channel model for lte (release 12),” 3GPP, Tech. Rep. 36.873 V12.7.0,, 2020.
  12. S. Jaeckel, L. Raschkowski, K. Borner, and L. Thiele, “QuaDRiGa-quasi deterministic radio channel generator, user manual and documentation,” Fraunhofer Heinrich Hertz Institute, Tech. Rep. v2.6.1,, 2021.
  13. 3GPP, “5G study on channel model for frequencies from 0.5 to 100 GHz,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.901, 2020, version 16.1.0.
  14. Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser mimo channels,” IEEE transactions on signal processing, vol. 52, no. 2, pp. 461–471, 2004.
Citations (1)

Summary

We haven't generated a summary for this paper yet.