Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Expected Time-Optimal Control: a Particle Model Predictive Control-based Approach via Sequential Convex Programming (2404.16269v2)

Published 25 Apr 2024 in math.OC, cs.SY, and eess.SY

Abstract: In this paper, we consider the problem of minimum-time optimal control for a dynamical system with initial state uncertainties and propose a sequential convex programming (SCP) solution framework. We seek to minimize the expected terminal (mission) time, which is an essential capability for planetary exploration missions where ground rovers have to carry out scientific tasks efficiently within the mission timelines in uncertain environments. Our main contribution is to convert the underlying stochastic optimal control problem into a deterministic, numerically tractable, optimal control problem. To this end, the proposed solution framework combines two strategies from previous methods: i) a partial model predictive control with consensus horizon approach and ii) a sum-of-norm cost, a temporally strictly increasing weighted-norm, promoting minimum-time trajectories. Our contribution is to adopt these formulations into an SCP solution framework and obtain a numerically tractable stochastic control algorithm. We then demonstrate the resulting control method in multiple applications: i) a closed-loop linear system as a representative result (a spacecraft double integrator model), ii) an open-loop linear system (the same model), and then iii) a nonlinear system (Dubin's car).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. J.-P. de la Croix, F. Rossi, R. Brockers, D. Aguilar, K. Albee, E. Boroson, A. Cauligi, J. Delaune, and others, “Multi-agent autonomy for space exploration on the CADRE Lunar technology demonstration mission,” in IEEE Aerospace Conference, 2024.
  2. M. W. Harris and B. Açıkmeşe, “Minimum time rendezvous of multiple spacecraft using differential drag,” AIAA Journal of Guidance, Control, and Dynamics, vol. 37, no. 2, pp. 365–373, 2014.
  3. U. Eren, A. Prach, B. B. Koçer, S. V. Raković, E. Kayacan, and B. Açikmese, “Model predictive control in aerospace systems: Current state and opportunities,” AIAA Journal of Guidance, Control, and Dynamics, vol. 40, no. 7, pp. 1541–1566, 2017.
  4. R. L. Sutherland, I. V. Kolmanovsky, A. R. Girard, F. A. Leve, and C. D. Petersen, “Minimum-time model predictive spacecraft attitude controlfor waypoint following and exclusion zone avoidance,” in AIAA Scitech Forum, 2019.
  5. A. Cauligi, R. M. Swan, H. Ono, S. Daftry, J. Elliott, L. Matthies, and D. Atha, “ShadowNav: Crater-based localization for nighttime and permanently shadowed region lunar navigation,” in IEEE Aerospace Conference, 2023.
  6. S. Daftry, Z. Chen, Y. Cheng, S. Tepsuporn, S. Khattak, L. Matthies, B. Coltin, U. Naam, L. M. Ma, and M. Deans, “LunarNav: Crater-based localization for long-range autonomous rover navigation,” in IEEE Aerospace Conference, 2023.
  7. D. Heath, S. Orey, V. Pestien, and W. Sudderth, “Minimizing or maximizing the expected time to reach zero,” SIAM Journal on Control and Optimization, vol. 25, no. 1, pp. 195–205, 1987.
  8. R. P. Anderson, E. Bakolas, D. Milutinović, and P. Tsiotras, “Optimal feedback guidance of a small aerial vehicle in a stochastic wind,” Journal of Guidance, Control, and Dynamics, vol. 36, no. 4, pp. 975–985, 2013.
  9. M. Guillot and G. Stauffer, “The stochastic shortest path problem: A polyhedral combinatorics perspective,” European Journal of Operational Research, vol. 285, no. 1, pp. 148–158, 2020.
  10. R. Dyro, J. Harrison, A. Sharma, and M. Pavone, “Particle MPC for uncertain and learning-based control,” in IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, 2021.
  11. D. Malyuta, T. P. Reynolds, M. Szmuk, T. Lew, R. Bonalli, M. Pavone, and B. Açıkmeşe, “Convex optimization for trajectory generation: A tutorial on generating dynamically feasible trajectories reliably and efficiently,” IEEE Control Systems Magazine, vol. 42, no. 5, pp. 40–113, 2022.
  12. L. Blackmore, M. Ono, A. Bektassov, and B. C. Williams, “A probabilistic particle-control approximation of chance-constrained stochastic predictive control,” vol. 26, no. 3, pp. 502–517, 2010.
  13. T. H. de Mello and G. Bayraksan, “Monte Carlo sampling-based methods for stochastic optimization,” Surveys in Operations Research and Management Science, vol. 19, no. 1, pp. 56–85, 2014.
  14. H. Zhu and J. Alonso-Mora, “Chance-constrained collision avoidance for MAVs in dynamic environments,” vol. 4, no. 2, pp. 776–783, 2019.
  15. T. Singh and P. Singla, “Sequential linear programming for design of time-optimal controllers,” in Proc. IEEE Conf. on Decision and Control, 2007.
  16. E. J. Candès, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted ℒℒ\mathcal{L}caligraphic_L1 minimization,” Journal of Fourier Analysis and Applications, vol. 14, no. 5, pp. 877–905, 2008.
  17. M. Nagahara, D. E. Quevedo, and D. Nešić, “Maximum hands-off control: A paradigm of control effort minimization,” IEEE Transactions on Automatic Control, vol. 61, no. 3, pp. 735–747, 2016.
  18. K. Echigo, C. R. Hayner, A. Mittal, S. B. Sarsılmaz, M. W. Harris, and B. Açıkmeşe, “Linear programming approach to relative-orbit control with element-wise quantized control,” IEEE Control Systems Letters, vol. 7, pp. 3042–3047, 2023.
  19. A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP solver for embedded systems,” in European Control Conference, 2013.
  20. B. K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM Journal on Computing, vol. 24, no. 2, pp. 227–234, 1995.
  21. E. Candes and T. Tao, “Decoding by linear programming,” IEEE Transactions on Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005.
  22. G. M. Chari, A. G. Kamath, P. Elango, and B. Açıkmeşe, “Fast Monte Carlo analysis for 6-DoF powered-descent guidance via GPU-accelerated sequential convex programming,” in AIAA Scitech Forum, 2024.
  23. M. Mote, M. Egerstedt, E. Feron, A. Bylard, and M. Pavone, “Collision-inclusive trajectory optimization for free-flying spacecraft,” AIAA Journal of Guidance, Control, and Dynamics, 2020.
  24. A. Cauligi, A. Chakrabarty, S. Di Cairano, and R. Quirynen, “PRISM: Recurrent neural networks and presolve methods for fast mixed-integer optimal control,” in Learning for Dynamics & Control, 2022.
  25. L. E. Dubins, “On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents,” American Journal of Mathematics, vol. 79, no. 3, pp. 497–516, 1957.
  26. T. P. Reynolds, “Computation guidance and control for aerospace systems,” Ph.D. dissertation, University of Washington, Seattle, WA, 2021.
  27. M. Szmuk, “Successive convexification & high performance feedback control for agile flight,” Ph.D. dissertation, University of Washington, Seattle, WA, 2019.
  28. A. A. Feldbâum, “Dual control theory problems,” IFAC Proceedings Volumes, vol. 1, no. 2, pp. 541–550, 1963.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com