Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tractable Conjunctive Queries over Static and Dynamic Relations (2404.16224v1)

Published 24 Apr 2024 in cs.DB

Abstract: We investigate the evaluation of conjunctive queries over static and dynamic relations. While static relations are given as input and do not change, dynamic relations are subject to inserts and deletes. We characterise syntactically three classes of queries that admit constant update time and constant enumeration delay. We call such queries tractable. Depending on the class, the preprocessing time is linear, polynomial, or exponential (under data complexity, so the query size is constant). To decide whether a query is tractable, it does not suffice to analyse separately the sub-query over the static relations and the sub-query over the dynamic relations. Instead, we need to take the interaction between the static and the dynamic relations into account. Even when the sub-query over the dynamic relations is not tractable, the overall query can become tractable if the dynamic relations are sufficiently constrained by the static ones.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. A. Abboud and V. V. Williams. Popular Conjectures Imply Strong Lower Bounds for Dynamic Problems. In FOCS, pages 434–443, 2014.
  2. Size Bounds and Query Plans for Relational Joins. SIAM J. Comput., 42(4):1737–1767, 2013.
  3. On Acyclic Conjunctive Queries and Constant Delay Enumeration. In CSL, pages 208–222, 2007.
  4. Answering Conjunctive Queries Under Updates. In PODS, pages 303–318, 2017.
  5. Answering FO+MOD Queries under Updates on Bounded Degree Databases. ACM Trans. Database Syst., 43(2):7:1–7:32, 2018.
  6. Answering UCQs under Updates and in the Presence of Integrity Constraints. In ICDT, pages 8:1–8:19, 2018.
  7. J. Brault-Baron. De la pertinence de l’énumération: complexité en logiques propositionnelle et du premier ordre. PhD thesis, Université de Caen, 2013.
  8. J. Brault-Baron. Hypergraph Acyclicity Revisited. ACM Comput. Surv., 49(3):54:1–54:26, 2016.
  9. DBSP: Automatic Incremental View Maintenance for Rich Query Languages. Proc. VLDB Endow., 16(7):1601–1614, 2023.
  10. Reachability is in DynFO. J. ACM, 65(5):33:1–33:24, 2018.
  11. A. Durand and E. Grandjean. First-order Queries on Structures of Bounded Degree are Computable with Constant Delay. ACM Trans. Comput. Logic, 8(4):21, 2007.
  12. Unifying and Strengthening Hardness for Dynamic Problems via the Online Matrix-Vector Multiplication Conjecture. In STOC, pages 21–30, 2015.
  13. The Dynamic Yannakakis Algorithm: Compact and Efficient Query Processing Under Updates. In SIGMOD, pages 1259–1274, 2017.
  14. Counting Triangles under Updates in Worst-Case Optimal Time. In ICDT, pages 4:1–4:18, 2019.
  15. Maintaining Triangle Queries under Updates. ACM Trans. Database Syst., 45(3):11:1–11:46, 2020.
  16. Trade-offs in Static and Dynamic Evaluation of Hierarchical Queries. In PODS, pages 375–392, 2020.
  17. Conjunctive Queries with Free Access Patterns Under Updates. In ICDT, volume 255 of LIPIcs, pages 17:1–17:20, 2023.
  18. F-IVM: Analytics over Relational Databases under Updates. The VLDB Journal, 2023.
  19. Trade-offs in Static and Dynamic Evaluation of Hierarchical Queries. Log. Methods Comput. Sci., 19(3), 2023.
  20. Insert-Only versus Insert-Delete in Dynamic Query Evaluation. CoRR, abs/2312.09331, 2023.
  21. DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views. The VLDB Journal, 23(2):253–278, 2014.
  22. D. Marx. Approximating Fractional Hypertree Width. ACM Trans. Algorithms, 6(2):29:1–29:17, 2010.
  23. Worst-case optimal join algorithms. J. ACM, 65(3):16:1–16:40, 2018.
  24. Skew Strikes Back: New Developments in the Theory of Join Algorithms. SIGMOD Rec., 42(4):5–16, 2013.
  25. D. Olteanu and M. Schleich. Factorized Databases. SIGMOD Rec., 45(2):5–16, 2016.
  26. D. Olteanu and J. Závodný. Size Bounds for Factorised Representations of Query Results. ACM TODS, 40(1):2:1–2:44, 2015.
  27. Probabilistic Databases. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2011.
  28. Y. Tao and K. Yi. Intersection Joins under Updates. J. Comput. Syst. Sci., 124:41–64, 2022.
  29. Change Propagation Without Joins. Proc. VLDB Endow., 16(5):1046–1058, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.