Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How explainable AI affects human performance: A systematic review of the behavioural consequences of saliency maps (2404.16042v2)

Published 3 Apr 2024 in cs.HC and cs.AI

Abstract: Saliency maps can explain how deep neural networks classify images. But are they actually useful for humans? The present systematic review of 68 user studies found that while saliency maps can enhance human performance, null effects or even costs are quite common. To investigate what modulates these effects, the empirical outcomes were organised along several factors related to the human tasks, AI performance, XAI methods, images to be classified, human participants and comparison conditions. In image-focused tasks, benefits were less common than in AI-focused tasks, but the effects depended on the specific cognitive requirements. Moreover, benefits were usually restricted to incorrect AI predictions in AI-focused tasks but to correct ones in image-focused tasks. XAI-related factors had surprisingly little impact. The evidence was limited for image- and human-related factors and the effects were highly dependent on the comparison conditions. These findings may support the design of future user studies.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com