Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ORBIT-Surgical: An Open-Simulation Framework for Learning Surgical Augmented Dexterity (2404.16027v1)

Published 24 Apr 2024 in cs.RO

Abstract: Physics-based simulations have accelerated progress in robot learning for driving, manipulation, and locomotion. Yet, a fast, accurate, and robust surgical simulation environment remains a challenge. In this paper, we present ORBIT-Surgical, a physics-based surgical robot simulation framework with photorealistic rendering in NVIDIA Omniverse. We provide 14 benchmark surgical tasks for the da Vinci Research Kit (dVRK) and Smart Tissue Autonomous Robot (STAR) which represent common subtasks in surgical training. ORBIT-Surgical leverages GPU parallelization to train reinforcement learning and imitation learning algorithms to facilitate study of robot learning to augment human surgical skills. ORBIT-Surgical also facilitates realistic synthetic data generation for active perception tasks. We demonstrate ORBIT-Surgical sim-to-real transfer of learned policies onto a physical dVRK robot. Project website: orbit-surgical.github.io

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. J.-F. Onnasch, F. Schneider, V. Falk, M. Mierzwa, J. Bucerius, and F. W. Mohr, “Five years of less invasive mitral valve surgery: from experimental to routine approach.” in The heart surgery forum, vol. 5, no. 2, 2002, pp. 132–135.
  2. A. Tewari, J. Peabody, R. Sarle, G. Balakrishnan, A. Hemal, A. Shrivastava, and M. Menon, “Technique of da Vinci robot-assisted anatomic radical prostatectomy,” Urology, vol. 60, no. 4, pp. 569–572, 2002.
  3. J. Bodner, H. Wykypiel, G. Wetscher, and T. Schmid, “First experiences with the da Vinci™ operating robot in thoracic surgery,” European Journal of Cardio-thoracic surgery, vol. 25, no. 5, pp. 844–851, 2004.
  4. K. Goldberg. (2023) Augmented Dexterity: How Robots Can Enhance Surgeon Dexterity. [Online]. Available: https://bit.ly/Augmented-Dexterity-S24
  5. A. Allshire, M. MittaI, V. Lodaya, V. Makoviychuk, D. Makoviichuk, F. Widmaier, M. Wüthrich, S. Bauer, A. Handa, and A. Garg, “Transferring dexterous manipulation from GPU simulation to a remote real-world trifinger,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 11 802–11 809.
  6. A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu, D. Makoviichuk, K. Van Wyk, A. Zhurkevich, B. Sundaralingam et al., “Dextreme: Transfer of agile in-hand manipulation from simulation to reality,” arXiv preprint arXiv:2210.13702, 2022.
  7. J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley, and K. Goldberg, “Learning ambidextrous robot grasping policies,” Science Robotics, vol. 4, no. 26, p. eaau4984, 2019.
  8. N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk in minutes using massively parallel deep reinforcement learning,” in Conference on Robot Learning.   PMLR, 2022, pp. 91–100.
  9. P. Kaur, S. Taghavi, Z. Tian, and W. Shi, “A survey on simulators for testing self-driving cars,” in 2021 Fourth International Conference on Connected and Autonomous Driving (MetroCAD).   IEEE, 2021, pp. 62–70.
  10. E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012, pp. 5026–5033.
  11. E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for games, robotics and machine learning,” 2016.
  12. V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin, A. Allshire, A. Handa et al., “Isaac Gym: High performance GPU-based physics simulation for robot learning,” arXiv preprint arXiv:2108.10470, 2021.
  13. M. Mittal, C. Yu, Q. Yu, J. Liu, N. Rudin, D. Hoeller, J. L. Yuan, R. Singh, Y. Guo, H. Mazhar et al., “ORBIT: A unified simulation framework for interactive robot learning environments,” IEEE Robotics and Automation Letters, 2023.
  14. A. Attanasio, B. Scaglioni, E. De Momi, P. Fiorini, and P. Valdastri, “Autonomy in surgical robotics,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 4, pp. 651–679, 2021.
  15. A. T. Bourdillon, A. Garg, H. Wang, Y. J. Woo, M. Pavone, and J. Boyd, “Integration of reinforcement learning in a virtual robotic surgical simulation,” Surgical Innovation, vol. 30, no. 1, pp. 94–102, 2023.
  16. P. M. Scheikl, B. Gyenes, R. Younis, C. Haas, G. Neumann, M. Wagner, and F. Mathis-Ullrich, “LapGym–an open source framework for reinforcement learning in robot-assisted laparoscopic surgery,” arXiv preprint arXiv:2302.09606, 2023.
  17. J. Xu, B. Li, B. Lu, Y.-H. Liu, Q. Dou, and P.-A. Heng, “SurRol: An open-source reinforcement learning centered and dvrk compatible platform for surgical robot learning,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021.
  18. V. M. Varier, D. K. Rajamani, F. Tavakkolmoghaddam, A. Munawar, and G. S. Fischer, “AMBF-RL: A real-time simulation based reinforcement learning toolkit for medical robotics,” in 2022 International Symposium on Medical Robotics (ISMR).   IEEE, 2022, pp. 1–8.
  19. E. Tagliabue, A. Pore, D. Dall’Alba, E. Magnabosco, M. Piccinelli, and P. Fiorini, “Soft tissue simulation environment to learn manipulation tasks in autonomous robotic surgery,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 3261–3266.
  20. F. Richter, R. K. Orosco, and M. C. Yip, “Open-sourced reinforcement learning environments for surgical robotics,” arXiv preprint arXiv:1903.02090, 2019.
  21. NVIDIA, “FleX: A particle-based simulation library,” May 2017. [Online]. Available: https://github.com/NVIDIAGameWorks/FleX
  22. G. A. Fontanelli, M. Selvaggio, M. Ferro, F. Ficuciello, M. Vendittelli, and B. Siciliano, “A V-REP simulator for the da Vinci Research Kit robotic platform,” in 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob).   IEEE, 2018, pp. 1056–1061.
  23. S. Schmidgall, A. Krieger, and J. Eshraghian, “Surgical Gym: A high-performance GPU-based platform for reinforcement learning with surgical robots,” arXiv preprint arXiv:2310.04676, 2023.
  24. P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor, and S. P. DiMaio, “An open-source research kit for the da Vinci® Surgical System,” in 2014 IEEE international conference on robotics and automation (ICRA).   IEEE, 2014, pp. 6434–6439.
  25. A. Shademan, R. S. Decker, J. D. Opfermann, S. Leonard, A. Krieger, and P. C. Kim, “Supervised autonomous robotic soft tissue surgery,” Science translational medicine, vol. 8, no. 337, pp. 337ra64–337ra64, 2016.
  26. Y. Zhu, J. Wong, A. Mandlekar, and R. Martín-Martín, “robosuite: A modular simulation framework and benchmark for robot learning,” in arXiv preprint arXiv:2009.12293, 2020.
  27. S. James, Z. Ma, D. Rovick Arrojo, and A. J. Davison, “RLBench: The robot learning benchmark & learning environment,” IEEE Robotics and Automation Letters, 2020.
  28. R. Antonova, P. Shi, H. Yin, Z. Weng, and D. K. Jensfelt, “Dynamic environments with deformable objects,” in Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.
  29. X. Lin, Y. Wang, J. Olkin, and D. Held, “SoftGym: Benchmarking deep reinforcement learning for deformable object manipulation,” in Conference on Robot Learning (CoRL).   PMLR, 2020.
  30. M. Macklin and M. Muller, “A constraint-based formulation of stable neo-hookean materials,” in ACM SIGGRAPH Conference on Motion, Interaction and Games, New York, NY, USA, 2021.
  31. M. Macklin, K. Storey, M. Lu, P. Terdiman, N. Chentanez, S. Jeschke, and M. Müller, “Small steps in physics simulation,” in ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2019.
  32. T. D. Nagy and T. Haidegger, “Autonomous surgical robotics at task and subtask levels,” in Advanced Robotics and Intelligent Automation in Manufacturing.   IGI global, 2020, pp. 296–319.
  33. F. Ficuciello, G. Tamburrini, A. Arezzo, L. Villani, and B. Siciliano, “Autonomy in surgical robots and its meaningful human control,” Paladyn, Journal of Behavioral Robotics, vol. 10, no. 1, pp. 30–43, 2019.
  34. A. Murali, S. Sen, B. Kehoe, A. Garg, S. McFarland, S. Patil, W. D. Boyd, S. Lim, P. Abbeel, and K. Goldberg, “Learning by observation for surgical subtasks: Multilateral cutting of 3D viscoelastic and 2D orthotropic tissue phantoms,” in 2015 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2015, pp. 1202–1209.
  35. B. Thananjeyan, A. Garg, S. Krishnan, C. Chen, L. Miller, and K. Goldberg, “Multilateral surgical pattern cutting in 2D orthotropic gauze with deep reinforcement learning policies for tensioning,” in 2017 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2017, pp. 2371–2378.
  36. S. Sen, A. Garg, D. V. Gealy, S. McKinley, Y. Jen, and K. Goldberg, “Automating multi-throw multilateral surgical suturing with a mechanical needle guide and sequential convex optimization,” in 2016 IEEE international conference on robotics and automation (ICRA).   IEEE, 2016, pp. 4178–4185.
  37. S. Krishnan, A. Garg, S. Patil, C. Lea, G. Hager, P. Abbeel, and K. Goldberg, “Transition state clustering: Unsupervised surgical trajectory segmentation for robot learning,” International Journal of Robotics Research (IJRR), 2017.
  38. A. Munawar, Y. Wang, R. Gondokaryono, and G. S. Fischer, “A real-time dynamic simulator and an associated front-end representation format for simulating complex robots and environments,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2019, pp. 1875–1882.
  39. Intuitive Surgical. SimNow Simulation Software. [Online]. Available: https://www.intuitive.com/en-us/products-and-services/da-vinci/learning/simnow
  40. Surgical Science. Mimic and Simbionix. [Online]. Available: https://surgicalscience.com/custom-made-simulation/robotic-surgery-simulation/
  41. Y. Narang, K. Storey, I. Akinola, M. Macklin, P. Reist, L. Wawrzyniak, Y. Guo, A. Moravanszky, G. State, M. Lu et al., “Factory: Fast contact for robotic assembly,” arXiv preprint arXiv:2205.03532, 2022.
  42. K. Mamou, E. Lengyel, and A. Peters, “Volumetric hierarchical approximate convex decomposition,” in Game Engine Gems 3.   CRC Press, 2016.
  43. Fundamentals of Laparoscopic Surgery. [Online]. Available: https://www.flsprogram.org/
  44. D. Makoviichuk and V. Makoviychuk, “rl-games: A High-performance Framework for Reinforcement Learning,” May 2021. [Online]. Available: https://github.com/Denys88/rl_games
  45. A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann, “Stable-baselines3: Reliable reinforcement learning implementations,” The Journal of Machine Learning Research, 2021.
  46. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.
  47. A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese, Y. Zhu, and R. Martín-Martín, “What matters in learning from offline human demonstrations for robot manipulation,” arXiv preprint arXiv:2108.03298, 2021.
  48. E. Heiden, M. Macklin, Y. Narang, D. Fox, A. Garg, and F. Ramos, “Disect: a differentiable simulator for parameter inference and control in robotic cutting,” Autonomous Robots, vol. 47, no. 5, pp. 549–578, 2023.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (11)
  1. Qinxi Yu (2 papers)
  2. Masoud Moghani (4 papers)
  3. Karthik Dharmarajan (9 papers)
  4. Vincent Schorp (4 papers)
  5. William Chung-Ho Panitch (4 papers)
  6. Jingzhou Liu (19 papers)
  7. Kush Hari (11 papers)
  8. Huang Huang (64 papers)
  9. Mayank Mittal (17 papers)
  10. Ken Goldberg (162 papers)
  11. Animesh Garg (129 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com