Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RetinaRegNet: A Zero-Shot Approach for Retinal Image Registration (2404.16017v3)

Published 24 Apr 2024 in cs.CV, cs.AI, cs.GT, and cs.LG

Abstract: We introduce RetinaRegNet, a zero-shot image registration model designed to register retinal images with minimal overlap, large deformations, and varying image quality. RetinaRegNet addresses these challenges and achieves robust and accurate registration through the following steps. First, we extract features from the moving and fixed images using latent diffusion models. We then sample feature points from the fixed image using a combination of the SIFT algorithm and random point sampling. For each sampled point, we identify its corresponding point in the moving image using a 2D correlation map, which computes the cosine similarity between the diffusion feature vectors of the point in the fixed image and all pixels in the moving image. Second, we eliminate most incorrectly detected point correspondences (outliers) by enforcing an inverse consistency constraint, ensuring that correspondences are consistent in both forward and backward directions. We further remove outliers with large distances between corresponding points using a global transformation based outlier detector. Finally, we implement a two-stage registration framework to handle large deformations. The first stage estimates a homography transformation to achieve global alignment between the images, while the second stage uses a third-order polynomial transformation to estimate local deformations. We evaluated RetinaRegNet on three retinal image registration datasets: color fundus images, fluorescein angiography images, and laser speckle flowgraphy images. Our model consistently outperformed state-of-the-art methods across all datasets. The accurate registration achieved by RetinaRegNet enables the tracking of eye disease progression, enhances surgical planning, and facilitates the evaluation of treatment efficacy. Our code is publicly available at: https://github.com/mirthAI/RetinaRegNet.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. D. L. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes, “Medical image registration,” Physics in Medicine & Biology, vol. 46, no. 3, p. R1, 2001.
  2. F. P. Oliveira and J. M. R. Tavares, “Medical image registration: a review,” Computer methods in biomechanics and biomedical engineering, vol. 17, no. 2, pp. 73–93, 2014.
  3. S. K. Saha, D. Xiao, A. Bhuiyan, T. Y. Wong, and Y. Kanagasingam, “Color fundus image registration techniques and applications for automated analysis of diabetic retinopathy progression: A review,” Biomedical Signal Processing and Control, vol. 47, pp. 288–302, 2019.
  4. A. Hering et al., “Learn2reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning,” IEEE Transactions on Medical Imaging, vol. 42, no. 3, pp. 697–712, 2022.
  5. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International journal of computer vision, vol. 60, pp. 91–110, 2004.
  6. H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part I 9.   Springer, 2006, pp. 404–417.
  7. P. F. Alcantarilla, A. Bartoli, and A. J. Davison, “Kaze features,” in Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part VI 12.   Springer, 2012, pp. 214–227.
  8. S. Wang, H. You, and K. Fu, “Bfsift: A novel method to find feature matches for sar image registration,” IEEE Geoscience and Remote Sensing Letters, vol. 9, no. 4, pp. 649–653, 2011.
  9. J. Liu, X. Li, Q. Wei, J. Xu, and D. Ding, “Semi-supervised keypoint detector and descriptor for retinal image matching,” in European Conference on Computer Vision.   Springer, 2022, pp. 593–609.
  10. S. A. Nasser, N. Gupte, and A. Sethi, “Reverse knowledge distillation: Training a large model using a small one for retinal image matching on limited data,” arXiv preprint arXiv:2307.10698, 2023.
  11. I. Rocco, M. Cimpoi, R. Arandjelović, A. Torii, T. Pajdla, and J. Sivic, “Neighbourhood consensus networks,” Advances in neural information processing systems, vol. 31, 2018.
  12. G. E. Christensen and H. J. Johnson, “Consistent image registration,” IEEE transactions on medical imaging, vol. 20, no. 7, pp. 568–582, 2001.
  13. M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.
  14. C. Hernandez-Matas, X. Zabulis, A. Triantafyllou, P. Anyfanti, S. Douma, and A. A. Argyros, “Fire: fundus image registration dataset,” Modeling and Artificial Intelligence in Ophthalmology, vol. 1, no. 4, pp. 16–28, 2017.
  15. L. Ding et al., “Flori21: Fluorescein angiography longitudinal retinal image registration dataset,” IEEE Dataport, 2021.
  16. G. Wang, Z. Wang, Y. Chen, and W. Zhao, “Robust point matching method for multimodal retinal image registration,” Biomedical Signal Processing and Control, vol. 19, pp. 68–76, 2015.
  17. Y.-M. Zhu, “Mutual information-based registration of temporal and stereo retinal images using constrained optimization,” Computer methods and programs in biomedicine, vol. 86, no. 3, pp. 210–215, 2007.
  18. P. A. Legg, P. L. Rosin, D. Marshall, and J. E. Morgan, “Improving accuracy and efficiency of mutual information for multi-modal retinal image registration using adaptive probability density estimation,” Computerized Medical Imaging and Graphics, vol. 37, no. 7-8, pp. 597–606, 2013.
  19. G. Molodij, E. N. Ribak, M. Glanc, and G. Chenegros, “Enhancing retinal images by nonlinear registration,” Optics Communications, vol. 342, pp. 157–166, 2015.
  20. J. Wang et al., “Gaussian field estimator with manifold regularization for retinal image registration,” Signal Processing, vol. 157, pp. 225–235, 2019.
  21. C. Hernandez-Matas, X. Zabulis, and A. A. Argyros, “Rempe: Registration of retinal images through eye modelling and pose estimation,” IEEE journal of biomedical and health informatics, vol. 24, no. 12, pp. 3362–3373, 2020.
  22. D. Motta, W. Casaca, and A. Paiva, “Vessel optimal transport for automated alignment of retinal fundus images,” IEEE Transactions on Image Processing, vol. 28, no. 12, pp. 6154–6168, 2019.
  23. B. Zou, Z. He, R. Zhao, C. Zhu, W. Liao, and S. Li, “Non-rigid retinal image registration using an unsupervised structure-driven regression network,” Neurocomputing, vol. 404, pp. 14–25, 2020.
  24. L. Chen, X. Huang, and J. Tian, “Retinal image registration using topological vascular tree segmentation and bifurcation structures,” Biomedical Signal Processing and Control, vol. 16, pp. 22–31, 2015.
  25. Y. Wang et al., “A segmentation based robust deep learning framework for multimodal retinal image registration,” in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2020, pp. 1369–1373.
  26. J. Liu and X. Li, “Geometrized transformer for self-supervised homography estimation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 9556–9565.
  27. J. Sun, Z. Shen, Y. Wang, H. Bao, and X. Zhou, “Loftr: Detector-free local feature matching with transformers,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 8922–8931.
  28. J. A. Lee, P. Liu, J. Cheng, and H. Fu, “A deep step pattern representation for multimodal retinal image registration,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 5077–5086.
  29. M. Santarossa et al., “Medregnet: Unsupervised multimodal retinal-image registration with gans and ranking loss,” in Medical Imaging 2022: Image Processing, vol. 12032.   SPIE, 2022, pp. 321–333.
  30. K. Han et al., “Scnet: Learning semantic correspondence,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 1831–1840.
  31. Y. Liu, L. Zhu, M. Yamada, and Y. Yang, “Semantic correspondence as an optimal transport problem,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 4463–4472.
  32. D. Zhao, Z. Song, Z. Ji, G. Zhao, W. Ge, and Y. Yu, “Multi-scale matching networks for semantic correspondence,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 3354–3364.
  33. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in neural information processing systems, vol. 33, pp. 6840–6851, 2020.
  34. Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based generative modeling through stochastic differential equations,” arXiv preprint arXiv:2011.13456, 2020.
  35. D. Kingma, T. Salimans, B. Poole, and J. Ho, “Variational diffusion models,” Advances in neural information processing systems, vol. 34, pp. 21 696–21 707, 2021.
  36. K. Gong, K. Johnson, G. El Fakhri, Q. Li, and T. Pan, “Pet image denoising based on denoising diffusion probabilistic model,” European Journal of Nuclear Medicine and Molecular Imaging, pp. 1–11, 2023.
  37. H. Li et al., “Srdiff: Single image super-resolution with diffusion probabilistic models,” Neurocomputing, vol. 479, pp. 47–59, 2022.
  38. A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and L. Van Gool, “Repaint: Inpainting using denoising diffusion probabilistic models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 11 461–11 471.
  39. T. Amit, T. Shaharbany, E. Nachmani, and L. Wolf, “Segdiff: Image segmentation with diffusion probabilistic models,” arXiv preprint arXiv:2112.00390, 2021.
  40. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 10 684–10 695.
  41. B. Poole, A. Jain, J. T. Barron, and B. Mildenhall, “Dreamfusion: Text-to-3d using 2d diffusion,” arXiv preprint arXiv:2209.14988, 2022.
  42. R. Mokady, A. Hertz, K. Aberman, Y. Pritch, and D. Cohen-Or, “Null-text inversion for editing real images using guided diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 6038–6047.
  43. X. Yang and X. Wang, “Diffusion model as representation learner,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 18 938–18 949.
  44. L. Tang, M. Jia, Q. Wang, C. P. Phoo, and B. Hariharan, “Emergent correspondence from image diffusion,” Advances in Neural Information Processing Systems, vol. 36, 2024.
  45. E. Hedlin et al., “Unsupervised semantic correspondence using stable diffusion,” arXiv preprint arXiv:2305.15581, 2023.
  46. H. Chen et al., “Aspanformer: Detector-free image matching with adaptive span transformer,” 2022.
  47. P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superglue: Learning feature matching with graph neural networks,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 4937–4946.
  48. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  49. M. Caron et al., “Emerging properties in self-supervised vision transformers,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 9650–9660.
  50. S. Kawamura and S. Tachibanaki, “Explaining the functional differences of rods versus cones,” Wiley Interdisciplinary Reviews: Membrane Transport and Signaling, vol. 1, no. 5, pp. 675–683, 2012.
  51. E. J. Duh, J. K. Sun, and A. W. Stitt, “Diabetic retinopathy: current understanding, mechanisms, and treatment strategies,” JCI insight, vol. 2, no. 14, 2017.
  52. M. Imran, A. Ullah, M. Arif, R. Noor et al., “A unified technique for entropy enhancement based diabetic retinopathy detection using hybrid neural network,” Computers in Biology and Medicine, vol. 145, p. 105424, 2022.
  53. K. K. Chan, F. Tang, C. C. Tham, A. L. Young, and C. Y. Cheung, “Retinal vasculature in glaucoma: a review,” BMJ open ophthalmology, vol. 1, no. 1, p. e000032, 2017.
  54. L. S. Lim, P. Mitchell, J. M. Seddon, F. G. Holz, and T. Y. Wong, “Age-related macular degeneration,” The Lancet, vol. 379, no. 9827, pp. 1728–1738, 2012.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com