Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constraints on simplified dark matter models involving an $s$-channel mediator with the ATLAS detector in $pp$ collisions at $\sqrt{s} = 13$ TeV (2404.15930v2)

Published 24 Apr 2024 in hep-ex

Abstract: This paper reports a summary of searches for a fermionic dark matter candidate in the context of theoretical models characterised by a mediator particle exchange in the $s$-channel. The data sample considered consists of $pp$ collisions delivered by the Large Hadron Collider during its Run 2 at a centre-of-mass energy of $\sqrt{s} = 13$ TeV and recorded by the ATLAS detector, corresponding to up to 140 $fb{-1}$. The interpretations of the results are based on simplified models where the new mediator particles can be spin-0, with scalar or pseudo-scalar couplings to fermions, or spin-1, with vector or axial-vector couplings to fermions. Exclusion limits are obtained from various searches characterised by final states with resonant production of Standard Model particles, or production of Standard Model particles in association with large missing transverse momentum.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (101)
  1. G. Hinshaw “Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results” In Astrophys. J. Suppl. 208, 2013, pp. 19 DOI: 10.1088/0067-0049/208/2/19
  2. Planck Collaboration “Planck 2018 results - I. Overview and the cosmological legacy of Planck” In A&A 641, 2020, pp. A1 DOI: 10.1051/0004-6361/201833880
  3. Virginia Trimble “Existence and Nature of Dark Matter in the Universe” In Ann. Rev. Astron. Astrophys. 25.1, 1987, pp. 425–472 DOI: 10.1146/annurev.aa.25.090187.002233
  4. Gianfranco Bertone, Dan Hooper and Joseph Silk “Particle dark matter: Evidence, candidates and constraints” In Phys. Rept. 405, 2005, pp. 279–390 DOI: 10.1016/j.physrep.2004.08.031
  5. Jonathan L. Feng “Dark Matter Candidates from Particle Physics and Methods of Detection” In Ann. Rev. Astron. Astrophys. 48, 2010, pp. 495–545 DOI: 10.1146/annurev-astro-082708-101659
  6. Pierre Fayet “Supersymmetry and weak, electromagnetic and strong interactions” In Phys. Lett. B 64, 1976, pp. 159 DOI: 10.1016/0370-2693(76)90319-1
  7. Pierre Fayet “Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions” In Phys. Lett. B 69, 1977, pp. 489 DOI: 10.1016/0370-2693(77)90852-8
  8. Glennys R. Farrar and Pierre Fayet “Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry” In Phys. Lett. B 76, 1978, pp. 575 DOI: 10.1016/0370-2693(78)90858-4
  9. Jalal Abdallah “Simplified models for dark matter searches at the LHC” In Phys. Dark Univ. 9-10, 2015, pp. 8–23 DOI: 10.1016/j.dark.2015.08.001
  10. Daniel Abercrombie “Dark Matter benchmark models for early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum” In Phys. Dark Univ. 27, 2020, pp. 100371 DOI: 10.1016/j.dark.2019.100371
  11. “Constraints on dark matter from colliders” In Phys. Rev. D 82, 2010, pp. 116010 DOI: 10.1103/PhysRevD.82.116010
  12. “Constraints on light Majorana dark matter from colliders” In Phys. Lett. B 695, 2011, pp. 185–188 DOI: 10.1016/j.physletb.2010.11.009
  13. “Recommendations of the LHC Dark Matter Working Group: Comparing LHC searches for dark matter mediators in visible and invisible decay channels and calculations of the thermal relic density” In Phys. Dark Univ. 26, 2019, pp. 100377 DOI: 10.1016/j.dark.2019.100377
  14. ATLAS Collaboration “Constraints on mediator-based dark matter and scalar dark energy models using s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV p⁢p𝑝𝑝ppitalic_p italic_p collision data collected by the ATLAS detector” In JHEP 05, 2019, pp. 142 DOI: 10.1007/JHEP05(2019)142
  15. ATLAS Collaboration “The ATLAS Experiment at the CERN Large Hadron Collider” In JINST 3, 2008, pp. S08003 DOI: 10.1088/1748-0221/3/08/S08003
  16. ATLAS Collaboration “ATLAS Insertable B-Layer: Technical Design Report”, 2010 URL: https://cds.cern.ch/record/1291633
  17. B. Abbott “Production and integration of the ATLAS Insertable B-Layer” In JINST 13, 2018, pp. T05008 DOI: 10.1088/1748-0221/13/05/T05008
  18. ATLAS Collaboration “Performance of the ATLAS trigger system in 2015” In Eur. Phys. J. C 77, 2017, pp. 317 DOI: 10.1140/epjc/s10052-017-4852-3
  19. ATLAS Collaboration “The ATLAS Collaboration Software and Firmware”, ATL-SOFT-PUB-2021-001, 2021 URL: https://cds.cern.ch/record/2767187
  20. Yang Bai, Patrick J. Fox and Roni Harnik “The Tevatron at the frontier of dark matter direct detection” In JHEP 12, 2010, pp. 048 DOI: 10.1007/JHEP12(2010)048
  21. “Maverick dark matter at colliders” In JHEP 09, 2010, pp. 037 DOI: 10.1007/JHEP09(2010)037
  22. “LHC bounds on interactions of dark matter” In Phys. Rev. D 84, 2011, pp. 095013 DOI: 10.1103/PhysRevD.84.095013
  23. “Missing energy signatures of dark matter at the LHC” In Phys. Rev. D 85, 2012, pp. 056011 DOI: 10.1103/PhysRevD.85.056011
  24. Matthew R. Buckley, David Feld and Dorival Gonçalves “Scalar simplified models for dark matter” In Phys. Rev. D 91, 2015 DOI: 10.1103/physrevd.91.015017
  25. “Constraining dark sectors at colliders: Beyond the effective theory approach” In Phys. Rev. D 91 American Physical Society, 2015, pp. 055009 DOI: 10.1103/PhysRevD.91.055009
  26. “Simplified dark matter top-quark interactions at the LHC” In JHEP 06, 2015, pp. 078 DOI: 10.1007/JHEP06(2015)078
  27. “Minimal flavour violation: an effective field theory approach” In Nucl. Phys. B 645, 2002, pp. 155–187 DOI: 10.1016/S0550-3213(02)00836-2
  28. “Single top quarks and dark matter” In Phys. Rev. D 96.3, 2017, pp. 035031 DOI: 10.1103/PhysRevD.96.035031
  29. “Dark matter production in association with a single top-quark at the LHC in a two-Higgs-doublet model with a pseudoscalar mediator” In Phys. Dark Univ. 21, 2018, pp. 8–15 DOI: 10.1016/j.dark.2018.04.006
  30. “Searching for production of dark matter in association with top quarks at the LHC” In JHEP 02, 2019, pp. 029 DOI: 10.1007/JHEP02(2019)029
  31. “Constraining Dark Sectors with Monojets and Dijets” In JHEP 07, 2015, pp. 089 DOI: 10.1007/JHEP07(2015)089
  32. ATLAS Collaboration “Luminosity determination in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV using the ATLAS detector at the LHC” In Eur. Phys. J. C 83, 2023, pp. 982 DOI: 10.1140/epjc/s10052-023-11747-w
  33. ATLAS Collaboration “Electron efficiency measurements with the ATLAS detector using 2012 LHC proton–proton collision data” In Eur. Phys. J. C 77, 2017, pp. 195 DOI: 10.1140/epjc/s10052-017-4756-2
  34. ATLAS Collaboration “Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton–proton collision data” In JINST 14, 2019, pp. P12006 DOI: 10.1088/1748-0221/14/12/P12006
  35. ATLAS Collaboration “Muon reconstruction and identification efficiency in ATLAS using the full Run 2 p⁢p𝑝𝑝ppitalic_p italic_p collision data set at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Eur. Phys. J. C 81, 2021, pp. 578 DOI: 10.1140/epjc/s10052-021-09233-2
  36. ATLAS Collaboration “Jet reconstruction and performance using particle flow with the ATLAS Detector” In Eur. Phys. J. C 77, 2017, pp. 466 DOI: 10.1140/epjc/s10052-017-5031-2
  37. ATLAS Collaboration “Jet energy scale and resolution measured in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Eur. Phys. J. C 81, 2021, pp. 689 DOI: 10.1140/epjc/s10052-021-09402-3
  38. ATLAS Collaboration “Optimisation of large-radius jet reconstruction for the ATLAS detector in 13⁢TeV13TeV13\,\text{TeV}13 TeV proton–proton collisions” In Eur. Phys. J. C 81, 2021, pp. 334 DOI: 10.1140/epjc/s10052-021-09054-3
  39. ATLAS Collaboration “In situ calibration of large-radius jet energy and mass in 13⁢TeV13TeV13\,\text{TeV}13 TeV proton–proton collisions with the ATLAS detector” In Eur. Phys. J. C 79, 2019, pp. 135 DOI: 10.1140/epjc/s10052-019-6632-8
  40. ATLAS Collaboration “Measurement of the ATLAS Detector Jet Mass Response using Forward Folding with 80⁢fb−180superscriptfb180\,\text{fb}^{-1}80 fb start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT of s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV p⁢p𝑝𝑝ppitalic_p italic_p data”, ATLAS-CONF-2020-022, 2020 URL: https://cds.cern.ch/record/2724442
  41. ATLAS Collaboration “Performance of pile-up mitigation techniques for jets in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=8⁢TeV𝑠8TeV\sqrt{s}=8\,\text{TeV}square-root start_ARG italic_s end_ARG = 8 TeV using the ATLAS detector” In Eur. Phys. J. C 76, 2016, pp. 581 DOI: 10.1140/epjc/s10052-016-4395-z
  42. ATLAS Collaboration “Forward jet vertex tagging using the particle flow algorithm”, ATL-PHYS-PUB-2019-026, 2019 URL: https://cds.cern.ch/record/2683100
  43. Matteo Cacciari, Gavin P. Salam and Gregory Soyez “The anti-ktsubscript𝑘𝑡k_{t}italic_k start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT jet clustering algorithm” In JHEP 04, 2008, pp. 063 DOI: 10.1088/1126-6708/2008/04/063
  44. Matteo Cacciari, Gavin P. Salam and Gregory Soyez “FastJet user manual” In Eur. Phys. J. C 72, 2012, pp. 1896 DOI: 10.1140/epjc/s10052-012-1896-2
  45. “Jets from Jets: Re-clustering as a tool for large radius jet reconstruction and grooming at the LHC” In JHEP 02, 2015, pp. 075 DOI: 10.1007/JHEP02(2015)075
  46. ATLAS Collaboration “Performance of b𝑏bitalic_b-jet identification in the ATLAS experiment” In JINST 11, 2016, pp. P04008 DOI: 10.1088/1748-0221/11/04/P04008
  47. ATLAS Collaboration “Optimisation of the ATLAS b𝑏bitalic_b-tagging performance for the 2016 LHC Run”, ATL-PHYS-PUB-2016-012, 2016 URL: https://cds.cern.ch/record/2160731
  48. ATLAS Collaboration “ATLAS b𝑏bitalic_b-jet identification performance and efficiency measurement with t⁢t¯𝑡¯𝑡t\bar{t}italic_t over¯ start_ARG italic_t end_ARG events in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Eur. Phys. J. C 79, 2019, pp. 970 DOI: 10.1140/epjc/s10052-019-7450-8
  49. ATLAS Collaboration “ATLAS flavour-tagging algorithms for the LHC Run 2 p⁢p𝑝𝑝ppitalic_p italic_p collision dataset” In Eur. Phys. J. C 83, 2023, pp. 681 DOI: 10.1140/epjc/s10052-023-11699-1
  50. David Krohn, Jesse Thaler and Lian-Tao Wang “Jets with Variable R” In JHEP 06, 2009, pp. 059 DOI: 10.1088/1126-6708/2009/06/059
  51. ATLAS Collaboration “Performance of missing transverse momentum reconstruction with the ATLAS detector using proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Eur. Phys. J. C 78, 2018, pp. 903 DOI: 10.1140/epjc/s10052-018-6288-9
  52. ATLAS Collaboration “Object-based missing transverse momentum significance in the ATLAS Detector”, ATLAS-CONF-2018-038, 2018 URL: https://cds.cern.ch/record/2630948
  53. ATLAS Collaboration “Search for new phenomena in final states with b𝑏bitalic_b-jets and missing transverse momentum in s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV p⁢p𝑝𝑝ppitalic_p italic_p collisions with the ATLAS detector” In JHEP 05, 2021, pp. 093 DOI: 10.1007/JHEP05(2021)093
  54. ATLAS Collaboration “Search for a scalar partner of the top quark in the all-hadronic t⁢t¯𝑡¯𝑡t\bar{t}italic_t over¯ start_ARG italic_t end_ARG plus missing transverse momentum final state at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Eur. Phys. J. C 80, 2020, pp. 737 DOI: 10.1140/epjc/s10052-020-8102-8
  55. ATLAS Collaboration “Search for new phenomena with top-quark pairs and large missing transverse momentum using 140 fb−1superscriptfb1\mathrm{fb}^{-1}roman_fb start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT of p⁢p𝑝𝑝ppitalic_p italic_p collision data at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In JHEP 03, 2024, pp. 139 DOI: 10.1007/JHEP03(2024)139
  56. ATLAS Collaboration “Search for new phenomena in events with two opposite-charge leptons, jets and missing transverse momentum in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In JHEP 04, 2021, pp. 165 DOI: 10.1007/JHEP04(2021)165
  57. ATLAS Collaboration “Constraints on spin-0 dark matter mediators and invisible Higgs decays using ATLAS 13⁢TeV13TeV13\,\text{TeV}13 TeV p⁢p𝑝𝑝ppitalic_p italic_p collision data with two top quarks and missing transverse momentum in the final state” In Eur. Phys. J. C 83, 2023, pp. 503 DOI: 10.1140/epjc/s10052-023-11477-z
  58. ATLAS Collaboration “Search for dark matter produced in association with a single top quark and an energetic W𝑊Witalic_W boson in s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV p⁢p𝑝𝑝ppitalic_p italic_p collisions with the ATLAS detector” In Eur. Phys. J. C 83, 2023, pp. 603 DOI: 10.1140/epjc/s10052-023-11582-z
  59. ATLAS Collaboration “Search for dark matter produced in association with a single top quark in s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV p⁢p𝑝𝑝ppitalic_p italic_p collisions with the ATLAS detector” In Eur. Phys. J. C 81, 2021, pp. 860 DOI: 10.1140/epjc/s10052-021-09566-y
  60. ATLAS Collaboration “Search for new phenomena in events with an energetic jet and missing transverse momentum in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Phys. Rev. D 103, 2021, pp. 112006 DOI: 10.1103/PhysRevD.103.112006
  61. ATLAS Collaboration “Search for dark matter in association with an energetic photon in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In JHEP 02, 2021, pp. 226 DOI: 10.1007/JHEP02(2021)226
  62. ATLAS Collaboration “Search for associated production of a Z𝑍Zitalic_Z boson with an invisibly decaying Higgs boson or dark matter candidates at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Phys. Lett. B 829, 2022, pp. 137066 DOI: 10.1016/j.physletb.2022.137066
  63. ATLAS Collaboration “Search for dark matter at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector” In Eur. Phys. J. C 77, 2017, pp. 393 DOI: 10.1140/epjc/s10052-017-4965-8
  64. ATLAS Collaboration “Search for new resonances in mass distributions of jet pairs using 139⁢fb−1139superscriptfb1139\,\text{fb}^{-1}139 fb start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT of p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In JHEP 03, 2020, pp. 145 DOI: 10.1007/JHEP03(2020)145
  65. ATLAS Collaboration “Search for new phenomena in dijet events using 37⁢fb−137superscriptfb137\,\text{fb}^{-1}37 fb start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT of p⁢p𝑝𝑝ppitalic_p italic_p collision data collected at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Phys. Rev. D 96, 2017, pp. 052004 DOI: 10.1103/PhysRevD.96.052004
  66. ATLAS Collaboration “Search for low-mass resonances decaying into two jets and produced in association with a photon or a jet at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, 2024 arXiv:2403.08547 [hep-ex]
  67. ATLAS Collaboration “Search for light resonances decaying to boosted quark pairs and produced in association with a photon or a jet in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Phys. Lett. B 788, 2019, pp. 316 DOI: 10.1016/j.physletb.2018.09.062
  68. ATLAS Collaboration “Search for Low-Mass Dijet Resonances Using Trigger-Level Jets with the ATLAS Detector in p⁢p𝑝𝑝ppitalic_p italic_p Collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Phys. Rev. Lett. 121, 2018, pp. 081801 DOI: 10.1103/PhysRevLett.121.081801
  69. ATLAS Collaboration “Search for dijet resonances in events with an isolated charged lepton using s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV proton–proton collision data collected by the ATLAS detector” In JHEP 06, 2020, pp. 151 DOI: 10.1007/JHEP06(2020)151
  70. ATLAS Collaboration “Search for high-mass dilepton resonances using 139⁢fb−1139superscriptfb1139\,\text{fb}^{-1}139 fb start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT of p⁢p𝑝𝑝ppitalic_p italic_p collision data collected at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Phys. Lett. B 796, 2019, pp. 68 DOI: 10.1016/j.physletb.2019.07.016
  71. ATLAS Collaboration “Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Eur. Phys. J. C 78, 2018, pp. 565 DOI: 10.1140/epjc/s10052-018-5995-6
  72. ATLAS Collaboration “Search for t⁢t¯𝑡¯𝑡t\bar{t}italic_t over¯ start_ARG italic_t end_ARG resonances in fully hadronic final states in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In JHEP 10, 2020, pp. 061 DOI: 10.1007/JHEP10(2020)061
  73. ATLAS Collaboration “Search for t⁢t¯⁢H/A→t⁢t¯⁢t⁢t¯→𝑡¯𝑡𝐻𝐴𝑡¯𝑡𝑡¯𝑡t\bar{t}H/A\to t\bar{t}t\bar{t}italic_t over¯ start_ARG italic_t end_ARG italic_H / italic_A → italic_t over¯ start_ARG italic_t end_ARG italic_t over¯ start_ARG italic_t end_ARG production in the multilepton final state in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In JHEP 07, 2023, pp. 203 DOI: 10.1007/JHEP07(2023)203
  74. Zoltan Nagy “Three-Jet Cross Sections in Hadron-Hadron Collisions at Next-To-Leading Order” In Phys. Rev. Lett. 88, 2002, pp. 122003 DOI: 10.1103/PhysRevLett.88.122003
  75. Zoltan Nagy “Next-to-leading order calculation of three-jet observables in hadron-hadron collision” In Phys. Rev. D 68, 2003, pp. 094002 DOI: 10.1103/PhysRevD.68.094002
  76. Jesse Thaler and Ken Van Tilburg “Identifying boosted objects with N-subjettiness” In JHEP 03, 2011, pp. 015 DOI: 10.1007/JHEP03(2011)015
  77. ATLAS Collaboration “Performance of top-quark and W𝑊Witalic_W-boson tagging with ATLAS in Run 2 of the LHC” In Eur. Phys. J. C 79, 2019, pp. 375 DOI: 10.1140/epjc/s10052-019-6847-8
  78. “Parameterized neural networks for high-energy physics” In Eur. Phys. J. C 76.5, 2016, pp. 235 DOI: 10.1140/epjc/s10052-016-4099-4
  79. “Displaying dark matter constraints from colliders with varying simplified model parameters”, 2022 arXiv:2203.12035 [hep-ph]
  80. Antonio Boveia “Recommendations on presenting LHC searches for missing transverse energy signals using simplified s𝑠sitalic_s-channel models of dark matter” In Phys. Dark Univ. 27, 2020, pp. 100365 DOI: 10.1016/j.dark.2019.100365
  81. DarkSide Collaboration “Search for Dark-Matter–Nucleon Interactions via Migdal Effect with DarkSide-50” In Phys. Rev. Lett. 130 American Physical Society, 2023, pp. 101001 DOI: 10.1103/PhysRevLett.130.101001
  82. PandaX-4T Collaboration “Dark Matter Search Results from the PandaX-4T Commissioning Run” In Phys. Rev. Lett. 127.26 American Physical Society (APS), 2021, pp. 261802 DOI: 10.1103/physrevlett.127.261802
  83. LUX-ZEPLIN Collaboration “First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment” In Phys. Rev. Lett. 131.4, 2023, pp. 041002 DOI: 10.1103/PhysRevLett.131.041002
  84. Fermi-LAT Collaboration “Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data” In Phys. Rev. Lett. 115.23, 2015, pp. 231301 DOI: 10.1103/PhysRevLett.115.231301
  85. “MadDM: New dark matter tool in the LHC era” In AIP Conf. Proc. 1743.1, 2016, pp. 060001 DOI: 10.1063/1.4953318
  86. XENON Collaboration “First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment” In Phys. Rev. Lett. 131 American Physical Society, 2023, pp. 041003 DOI: 10.1103/PhysRevLett.131.041003
  87. LUX Collaboration “Limits on Spin-Dependent WIMP-Nucleon Cross Section Obtained from the Complete LUX Exposure” In Phys. Rev. Lett. 118 American Physical Society, 2017, pp. 251302 DOI: 10.1103/PhysRevLett.118.251302
  88. PICO Collaboration “Dark matter search results from the complete exposure of the PICO-60 C3⁢F8subscriptC3subscriptF8{\mathrm{C}}_{3}{\mathrm{F}}_{8}roman_C start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_F start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT bubble chamber” In Phys. Rev. D 100 American Physical Society, 2019, pp. 022001 DOI: 10.1103/PhysRevD.100.022001
  89. Tomohiro Abe “LHC Dark Matter Working Group: Next-generation spin-0 dark matter models” In Phys. Dark Univ. 27, 2020, pp. 100351 DOI: 10.1016/j.dark.2019.100351
  90. DM Forum repository “ DMV UFO model” URL: https://svnweb.cern.ch/cern/wsvn/LHCDMF/trunk/models/Monojet_DMV/?#ae98247b340ee12c1e7b0139c2062d807
  91. “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX” In JHEP 06, 2010, pp. 043 DOI: 10.1007/JHEP06(2010)043
  92. T. Sjöstrand, S. Mrenna and P. Skands “A brief introduction to PYTHIA 8.1” In Comput. Phys. Commun. 178, 2008, pp. 852–867 DOI: 10.1016/j.cpc.2008.01.036
  93. “Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators” In Eur. Phys. J. C 75.10, 2015, pp. 482 DOI: 10.1140/epjc/s10052-015-3700-6
  94. DMSimp Repository “ DMSimp UFO model” URL: http://feynrules.irmp.ucl.ac.be/wiki/DMsimp
  95. “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations” In JHEP 07, 2014, pp. 079 DOI: 10.1007/JHEP07(2014)079
  96. Matthew R. Buckley, David Feld and Dorival Gonçalves “Scalar simplified models for dark matter” In Phys. Rev. D 91, 2015, pp. 015017 DOI: 10.1103/PhysRevD.91.015017
  97. DM Forum repository “DMS_tloop UFO model” URL: https://svnweb.cern.ch/cern/wsvn/LHCDMF/trunk/models/Monojet_DMS_tloop/
  98. DM Forum repository “DMScalarMed_loop UFO model” URL: https://svnweb.cern.ch/cern/wsvn/LHCDMF/trunk/models/HF_S%2BPS/
  99. “DM+b⁢b¯𝑏¯𝑏b\bar{b}italic_b over¯ start_ARG italic_b end_ARG simulations with DMSimp: an update”, 2018 arXiv:1811.08002 [hep-ex]
  100. ATLAS Collaboration “ATLAS Computing Acknowledgements”, ATL-SOFT-PUB-2023-001, 2023 URL: https://cds.cern.ch/record/2869272
  101. ATLAS Collaboration, 2012 URL: https://cds.cern.ch/record/1451888
Citations (1)

Summary

We haven't generated a summary for this paper yet.