KGValidator: A Framework for Automatic Validation of Knowledge Graph Construction (2404.15923v1)
Abstract: This study explores the use of LLMs for automatic evaluation of knowledge graph (KG) completion models. Historically, validating information in KGs has been a challenging task, requiring large-scale human annotation at prohibitive cost. With the emergence of general-purpose generative AI and LLMs, it is now plausible that human-in-the-loop validation could be replaced by a generative agent. We introduce a framework for consistency and validation when using generative models to validate knowledge graphs. Our framework is based upon recent open-source developments for structural and semantic validation of LLM outputs, and upon flexible approaches to fact checking and verification, supported by the capacity to reference external knowledge sources of any kind. The design is easy to adapt and extend, and can be used to verify any kind of graph-structured data through a combination of model-intrinsic knowledge, user-supplied context, and agents capable of external knowledge retrieval.
- D. Vrandečić, M. Krötzsch, Wikidata: a free collaborative knowledgebase, Commun. ACM 57 (2014) 78–85. URL: https://doi.org/10.1145/2629489. doi:10.1145/2629489.
- Snomed ct: A clinical terminology but also a formal ontology, Journal of Biosciences and Medicines (2023). URL: https://api.semanticscholar.org/CorpusID:265433665.
- G. A. Miller, Wordnet: a lexical database for english, Commun. ACM 38 (1995) 39–41. URL: https://doi.org/10.1145/219717.219748. doi:10.1145/219717.219748.
- Knowledge vault: a web-scale approach to probabilistic knowledge fusion, in: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, Association for Computing Machinery, New York, NY, USA, 2014, p. 601–610. URL: https://doi.org/10.1145/2623330.2623623. doi:10.1145/2623330.2623623.
- Knowledge graph completion: A review, Ieee Access 8 (2020) 192435–192456. URL: "https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9220143".
- Do pre-trained models benefit knowledge graph completion? a reliable evaluation and a reasonable approach, in: S. Muresan, P. Nakov, A. Villavicencio (Eds.), Findings of the Association for Computational Linguistics: ACL 2022, Association for Computational Linguistics, Dublin, Ireland, 2022, pp. 3570–3581. URL: https://aclanthology.org/2022.findings-acl.282. doi:10.18653/v1/2022.findings-acl.282.
- A re-evaluation of knowledge graph completion methods, in: D. Jurafsky, J. Chai, N. Schluter, J. Tetreault (Eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Online, 2020, pp. 5516–5522. URL: https://aclanthology.org/2020.acl-main.489. doi:10.18653/v1/2020.acl-main.489.
- H. Ji, R. Grishman, Knowledge base population: Successful approaches and challenges, in: D. Lin, Y. Matsumoto, R. Mihalcea (Eds.), Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics, Portland, Oregon, USA, 2011, pp. 1148–1158. URL: https://aclanthology.org/P11-1115.
- A comprehensive overview of knowledge graph completion, Knowledge-Based Systems (2022) 109597.
- C. Fellbaum, Wordnet, in: Theory and applications of ontology: computer applications, Springer, 2010, pp. 231–243.
- Freebase: a collaboratively created graph database for structuring human knowledge, in: Proceedings of the 2008 ACM SIGMOD international conference on Management of data, 2008, pp. 1247–1250.
- O. Bodenreider, The unified medical language system (umls): integrating biomedical terminology, Nucleic acids research 32 (2004) D267–D270.
- Pretrain-KGE: Learning knowledge representation from pretrained language models, in: T. Cohn, Y. He, Y. Liu (Eds.), Findings of the Association for Computational Linguistics: EMNLP 2020, Association for Computational Linguistics, Online, 2020, pp. 259–266. URL: https://aclanthology.org/2020.findings-emnlp.25. doi:10.18653/v1/2020.findings-emnlp.25.
- A. Nayak, H. P. Timmapathini, Llm2kb: Constructing knowledge bases using instruction tuned context aware large language models, arXiv preprint arXiv:2308.13207 (2023). URL: https://arxiv.org/pdf/2308.13207.pdf.
- Text2kgbench: A benchmark for ontology-driven knowledge graph generation from text, in: International Semantic Web Conference, Springer, 2023, pp. 247–265. URL: https://arxiv.org/pdf/2308.02357.pdf.
- Unifying large language models and knowledge graphs: A roadmap, IEEE Transactions on Knowledge and Data Engineering (2024) 1–20. URL: http://dx.doi.org/10.1109/TKDE.2024.3352100. doi:10.1109/tkde.2024.3352100.
- Natural language to sql: where are we today?, Proc. VLDB Endow. 13 (2020) 1737–1750. URL: https://doi.org/10.14778/3401960.3401970. doi:10.14778/3401960.3401970.
- T. Guo, H. Gao, Content enhanced bert-based text-to-sql generation, ArXiv abs/1910.07179 (2019).
- Survey of hallucination in natural language generation, ACM Computing Surveys 55 (2023) 1–38. URL: http://dx.doi.org/10.1145/3571730. doi:10.1145/3571730.
- T. Safavi, D. Koutra, CoDEx: A Comprehensive Knowledge Graph Completion Benchmark, in: B. Webber, T. Cohn, Y. He, Y. Liu (Eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, Online, 2020, pp. 8328–8350. URL: https://aclanthology.org/2020.emnlp-main.669. doi:10.18653/v1/2020.emnlp-main.669.
- On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?, in: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, FAccT ’21, Association for Computing Machinery, New York, NY, USA, 2021, pp. 610–623. URL: https://dl.acm.org/doi/10.1145/3442188.3445922. doi:10.1145/3442188.3445922.
- D. Mytton, Data centre water consumption, npj Clean Water 4 (2021) 1–6. URL: https://www.nature.com/articles/s41545-021-00101-w. doi:10.1038/s41545-021-00101-w, publisher: Nature Publishing Group.