Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Porting Large Language Models to Mobile Devices for Question Answering (2404.15851v1)

Published 24 Apr 2024 in cs.CV

Abstract: Deploying LLMs on mobile devices makes all the capabilities of natural language processing available on the device. An important use case of LLMs is question answering, which can provide accurate and contextually relevant answers to a wide array of user queries. We describe how we managed to port state of the art LLMs to mobile devices, enabling them to operate natively on the device. We employ the llama.cpp framework, a flexible and self-contained C++ framework for LLM inference. We selected a 6-bit quantized version of the Orca-Mini-3B model with 3 billion parameters and present the correct prompt format for this model. Experimental results show that LLM inference runs in interactive speed on a Galaxy S21 smartphone and that the model delivers high-quality answers to user queries related to questions from different subjects like politics, geography or history.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Hannes Fassold (15 papers)

Summary

We haven't generated a summary for this paper yet.