Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large-sample theory for inferential models: a possibilistic Bernstein--von Mises theorem (2404.15843v1)

Published 24 Apr 2024 in math.ST, stat.ME, and stat.TH

Abstract: The inferential model (IM) framework offers alternatives to the familiar probabilistic (e.g., Bayesian and fiducial) uncertainty quantification in statistical inference. Allowing this uncertainty quantification to be imprecise makes it possible to achieve exact validity and reliability. But is imprecision and exact validity compatible with attainment of the classical notions of statistical efficiency? The present paper offers an affirmative answer to this question via a new possibilistic Bernstein--von Mises theorem that parallels a fundamental result in Bayesian inference. Among other things, our result demonstrates that the IM solution is asymptotically efficient in the sense that its asymptotic credal set is the smallest that contains the Gaussian distribution whose variance agrees with the Cramer--Rao lower bound.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. Statistical inference. In Introduction to Imprecise Probabilities, Wiley Ser. Probab. Stat., pages 135–189. Wiley, Chichester.
  2. Satellite conjunction analysis and the false confidence theorem. Proc. Royal Soc. A, 475(2227):2018.0565.
  3. Berger, J. O. (1984). The robust Bayesian viewpoint. In Robustness of Bayesian Analyses, volume 4 of Stud. Bayesian Econometrics, pages 63–144. North-Holland, Amsterdam. With comments and with a reply by the author.
  4. The formal definition of reference priors. Ann. Statist., 37(2):905–938.
  5. Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Statist., 38:325–339.
  6. Dempster, A. P. (2008). The Dempster–Shafer calculus for statisticians. Internat. J. Approx. Reason., 48(2):365–377.
  7. Denœux, T. (2006). Constructing belief functions from sample data using multinomial confidence regions. Internat. J. of Approx. Reason., 42(3):228–252.
  8. Denœux, T. (2014). Likelihood-based belief function: justification and some extensions to low-quality data. Internat. J. Approx. Reason., 55(7):1535–1547.
  9. Dubois, D. (2006). Possibility theory and statistical reasoning. Comput. Statist. Data Anal., 51(1):47–69.
  10. Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities. Reliab. Comput., 10(4):273–297.
  11. Possibility Theory. Plenum Press, New York.
  12. Efron, B. (2013). Discussion: “Confidence distribution, the frequentist distribution estimator of a parameter: a review” [mr3047496]. Int. Stat. Rev., 81(1):41–42.
  13. Fisher, R. A. (1935). The fiducial argument in statistical inference. Ann. Eugenics, 6:391–398.
  14. Fraser, D. A. S. (1968). The Structure of Inference. John Wiley & Sons Inc., New York.
  15. An Introduction to Bayesian Analysis. Springer, New York.
  16. Generalized fiducial inference: a review and new results. J. Amer. Statist. Assoc., 111(515):1346–1361.
  17. Hose, D. (2022). Possibilistic Reasoning with Imprecise Probabilities: Statistical Inference and Dynamic Filtering. PhD thesis, University of Stuttgart.
  18. Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems. Proc. Roy. Soc. London Ser. A, 186:453–461.
  19. Martin, R. (2015). Plausibility functions and exact frequentist inference. J. Amer. Statist. Assoc., 110(512):1552–1561.
  20. Martin, R. (2018). On an inferential model construction using generalized associations. J. Statist. Plann. Inference, 195:105–115.
  21. Martin, R. (2019). False confidence, non-additive beliefs, and valid statistical inference. Internat. J. Approx. Reason., 113:39–73.
  22. Martin, R. (2021). An imprecise-probabilistic characterization of frequentist statistical inference. arXiv:2112.10904.
  23. Martin, R. (2022a). Valid and efficient imprecise-probabilistic inference with partial priors, I. First results. arXiv:2203.06703.
  24. Martin, R. (2022b). Valid and efficient imprecise-probabilistic inference with partial priors, II. General framework. arXiv:2211.14567.
  25. Martin, R. (2023). Fiducial inference viewed through a possibility-theoretic inferential model lens. In Miranda, E., Montes, I., Quaeghebeur, E., and Vantaggi, B., editors, Proceedings of the Thirteenth International Symposium on Imprecise Probability: Theories and Applications, volume 215 of Proceedings of Machine Learning Research, pages 299–310. PMLR.
  26. Inferential models: a framework for prior-free posterior probabilistic inference. J. Amer. Statist. Assoc., 108(501):301–313.
  27. Inferential Models, volume 147 of Monographs on Statistics and Applied Probability. CRC Press, Boca Raton, FL.
  28. Schervish, M. J. (1995). Theory of Statistics. Springer-Verlag, New York.
  29. Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press, Princeton, N.J.
  30. Shafer, G. (1982). Belief functions and parametric models. J. Roy. Statist. Soc. Ser. B, 44(3):322–352. With discussion.
  31. van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press, Cambridge.
  32. Walley, P. (1991). Statistical Reasoning with Imprecise Probabilities, volume 42 of Monographs on Statistics and Applied Probability. Chapman & Hall Ltd., London.
  33. Wasserman, L. A. (1990). Belief functions and statistical inference. Canad. J. Statist., 18(3):183–196.
  34. Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Statist, 9:60–62.
  35. Zabell, S. L. (1992). R. A. Fisher and the fiducial argument. Statist. Sci., 7(3):369–387.
  36. Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1(1):3–28.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com