Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decentralized Multi-Agent Trajectory Planning in Dynamic Environments with Spatiotemporal Occupancy Grid Maps (2404.15602v1)

Published 24 Apr 2024 in cs.RO

Abstract: This paper proposes a decentralized trajectory planning framework for the collision avoidance problem of multiple micro aerial vehicles (MAVs) in environments with static and dynamic obstacles. The framework utilizes spatiotemporal occupancy grid maps (SOGM), which forecast the occupancy status of neighboring space in the near future, as the environment representation. Based on this representation, we extend the kinodynamic A* and the corridor-constrained trajectory optimization algorithms to efficiently tackle static and dynamic obstacles with arbitrary shapes. Collision avoidance between communicating robots is integrated by sharing planned trajectories and projecting them onto the SOGM. The simulation results show that our method achieves competitive performance against state-of-the-art methods in dynamic environments with different numbers and shapes of obstacles. Finally, the proposed method is validated in real experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. Y. Wang, J. Ji, Q. Wang, C. Xu, and F. Gao, “Autonomous Flights in Dynamic Environments with Onboard Vision,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021, pp. 1966–1973.
  2. G. Chen, W. Dong, X. Sheng, X. Zhu, and H. Ding, “An active sense and avoid system for flying robots in dynamic environments,” IEEE/ASME Transactions on Mechatronics, vol. 26, no. 2, pp. 668–678, 2021.
  3. X. Zhou, X. Wen, Z. Wang, Y. Gao, H. Li, Q. Wang, T. Yang, H. Lu, Y. Cao, C. Xu, and F. Gao, “Swarm of micro flying robots in the wild,” Science Robotics, vol. 7, no. 66, p. eabm5954, 2022/05/11.
  4. H. Zhu and J. Alonso-Mora, “Chance-Constrained Collision Avoidance for MAVs in Dynamic Environments,” IEEE Robot. Autom. Lett. (RA-L), vol. 4, no. 2, pp. 776–783, 2019-04.
  5. Z. Xu, D. Deng, Y. Dong, and K. Shimada, “DPMPC-Planner: A real-time UAV trajectory planning framework for complex static environments with dynamic obstacles,” in 2022 Int. Conf. Robot. Autom. ICRA, 2022, pp. 250–256.
  6. J. Tordesillas and J. P. How, “Mader: Trajectory planner in multiagent and dynamic environments,” IEEE Trans. Robot. (T-RO), vol. 38, no. 1, pp. 463–476, 2022.
  7. H. Thomas, M. G. de Saint Aurin, J. Zhang, and T. D. Barfoot, “Learning spatiotemporal occupancy grid maps for lifelong navigation in dynamic scenes,” in 2022 Intl. Conf. on Robot. and Autom. (ICRA), 2022, pp. 484–490.
  8. G. Chen, W. Dong, P. Peng, J. Alonso-Mora, and X. Zhu, “Continuous occupancy mapping in dynamic environments using particles,” arXiv preprint arXiv:2202.06273, 2022.
  9. J. Hou, X. Zhou, Z. Gan, and F. Gao, “Enhanced decentralized autonomous aerial robot teams with group planning,” IEEE Robot. Autom. Lett. (RA-L), vol. 7, no. 4, pp. 9240–9247, 2022.
  10. A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “Octomap: An efficient probabilistic 3d mapping framework based on octrees,” Auton. Robots, vol. 34, no. 3, pp. 189–206, 2013.
  11. B. L’Espérance and K. Gupta, “Safety hierarchy for planning with time constraints in unknown dynamic environments,” IEEE Transactions on Robotics, vol. 30, no. 6, pp. 1398–1411, 2014.
  12. J. Lin, H. Zhu, and J. Alonso-Mora, “Robust Vision-based Obstacle Avoidance for Micro Aerial Vehicles in Dynamic Environments,” in 2020 Intl. Conf. on Robot. and Autom. (ICRA), 2020, pp. 2682–2688.
  13. M. Kamel, J. Alonso-Mora, R. Siegwart, and J. Nieto, “Robust collision avoidance for multiple micro aerial vehicles using nonlinear model predictive control,” in 2017 IEEE/RSJ Intl. Conf. on Intell. Robots and Syst. (IROS), 2017, pp. 236–243.
  14. F. Gao and S. Shen, “Quadrotor trajectory generation in dynamic environments using semi-definite relaxation on nonconvex QCQP,” in 2017 Intl. Conf. on Robot. and Autom. (ICRA), 2017-05, pp. 6354–6361.
  15. H. Chen and P. Lu, “Real-time identification and avoidance of simultaneous static and dynamic obstacles on point cloud for UAVs navigation,” Robotics and Autonomous Systems, vol. 154, p. 104124, 2022.
  16. G. Chen, P. Peng, P. Zhang, and W. Dong, “Risk-aware trajectory sampling for quadrotor obstacle avoidance in dynamic environments,” IEEE Transactions on Industrial Electronics, pp. 1–10, 2023.
  17. G. Chen, S. Wu, M. Shi, W. Dong, H. Zhu, and J. Alonso-Mora, “RAST: Risk-Aware Spatio-Temporal Safety Corridors for MAV Navigation in Dynamic Uncertain Environments,” IEEE Robot. Autom. Lett. (RA-L), vol. 8, no. 2, pp. 808–815, 2023.
  18. W. Hönig, J. A. Preiss, T. K. S. Kumar, G. S. Sukhatme, and N. Ayanian, “Trajectory Planning for Quadrotor Swarms,” IEEE Trans. Robot. (T-RO), vol. 34, no. 4, pp. 856–869, 2018-08.
  19. H. Zhu and J. Alonso-Mora, “B-UAVC: Buffered Uncertainty-Aware Voronoi Cells for Probabilistic Multi-Robot Collision Avoidance,” in 2019 International Symposium on Multi-Robot and Multi-Agent Systems (MRS), 2019, pp. 162–168.
  20. C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Online Trajectory Generation With Distributed Model Predictive Control for Multi-Robot Motion Planning,” IEEE Robot. Autom. Lett. (RA-L), vol. 5, no. 2, pp. 604–611, 2020.
  21. K. Kondo, J. Tordesillas, R. Figueroa, J. Rached, J. Merkel, P. C. Lusk, and J. P. How, “Robust mader: Decentralized and asynchronous multiagent trajectory planner robust to communication delay,” in 2023 IEEE Intl. Conf. on Robot. and Autom. (ICRA), 2023, pp. 1687–1693.
  22. J. Park and H. J. Kim, “Online Trajectory Planning for Multiple Quadrotors in Dynamic Environments Using Relative Safe Flight Corridor,” IEEE Robot. Autom. Lett. (RA-L), vol. 6, no. 2, pp. 659–666, 2021.
  23. K. S. Mann, A. Tomy, A. Paigwar, A. Renzaglia, and C. Laugier, “Predicting Future Occupancy Grids in Dynamic Environment with Spatio-Temporal Learning,” 2022.
  24. B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and Efficient Quadrotor Trajectory Generation for Fast Autonomous Flight,” IEEE Robot. Autom. Lett. (RA-L), vol. 4, no. 4, pp. 3529–3536, 2019-10.
  25. S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J. Taylor, and V. Kumar, “Planning Dynamically Feasible Trajectories for Quadrotors Using Safe Flight Corridors in 3-D Complex Environments,” IEEE Robot. Autom. Lett. (RA-L), vol. 2, no. 3, pp. 1688–1695, 2017.
  26. Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically Constrained Trajectory Optimization for Multicopters,” IEEE Trans. Robot. (T-RO), pp. 1–10, 2022.

Summary

We haven't generated a summary for this paper yet.