Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Brain Storm Optimization Based Swarm Learning for Diabetic Retinopathy Image Classification (2404.15585v1)

Published 24 Apr 2024 in cs.LG and eess.IV

Abstract: The application of deep learning techniques to medical problems has garnered widespread research interest in recent years, such as applying convolutional neural networks to medical image classification tasks. However, data in the medical field is often highly private, preventing different hospitals from sharing data to train an accurate model. Federated learning, as a privacy-preserving machine learning architecture, has shown promising performance in balancing data privacy and model utility by keeping private data on the client's side and using a central server to coordinate a set of clients for model training through aggregating their uploaded model parameters. Yet, this architecture heavily relies on a trusted third-party server, which is challenging to achieve in real life. Swarm learning, as a specialized decentralized federated learning architecture that does not require a central server, utilizes blockchain technology to enable direct parameter exchanges between clients. However, the mining of blocks requires significant computational resources, limiting its scalability. To address this issue, this paper integrates the brain storm optimization algorithm into the swarm learning framework, named BSO-SL. This approach clusters similar clients into different groups based on their model distributions. Additionally, leveraging the architecture of BSO, clients are given the probability to engage in collaborative learning both within their cluster and with clients outside their cluster, preventing the model from converging to local optima. The proposed method has been validated on a real-world diabetic retinopathy image classification dataset, and the experimental results demonstrate the effectiveness of the proposed approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. M. D. Abramoff, M. Niemeijer, and S. R. Russell, “Automated detection of diabetic retinopathy: barriers to translation into clinical practice,” Expert review of medical devices, vol. 7, no. 2, pp. 287–296, 2010.
  2. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436–444, 2015.
  3. S. Huang, Z. Lu, R. Cheng, and C. He, “Fapn: Feature-aligned pyramid network for dense image prediction,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 864–873.
  4. L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu, “A survey of deep learning-based object detection,” IEEE access, vol. 7, pp. 128 837–128 868, 2019.
  5. D. Shen, G. Wu, and H.-I. Suk, “Deep learning in medical image analysis,” Annual review of biomedical engineering, vol. 19, pp. 221–248, 2017.
  6. Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M. Chen, “Medical image classification with convolutional neural network,” in 2014 13th international conference on control automation robotics & vision (ICARCV).   IEEE, 2014, pp. 844–848.
  7. S. S. Yadav and S. M. Jadhav, “Deep convolutional neural network based medical image classification for disease diagnosis,” Journal of Big data, vol. 6, no. 1, pp. 1–18, 2019.
  8. I. Kandel and M. Castelli, “Transfer learning with convolutional neural networks for diabetic retinopathy image classification. a review,” Applied Sciences, vol. 10, no. 6, p. 2021, 2020.
  9. L. Li, Y. Fan, M. Tse, and K.-Y. Lin, “A review of applications in federated learning,” Computers & Industrial Engineering, vol. 149, p. 106854, 2020.
  10. C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey on federated learning,” Knowledge-Based Systems, vol. 216, p. 106775, 2021.
  11. D. C. Nguyen, Q.-V. Pham, P. N. Pathirana, M. Ding, A. Seneviratne, Z. Lin, O. Dobre, and W.-J. Hwang, “Federated learning for smart healthcare: A survey,” ACM Computing Surveys (CSUR), vol. 55, no. 3, pp. 1–37, 2022.
  12. J. Wang, G. Xie, Y. Huang, J. Lyu, F. Zheng, Y. Zheng, and Y. Jin, “Fedmed-gan: Federated domain translation on unsupervised cross-modality brain image synthesis,” Neurocomputing, vol. 546, p. 126282, 2023.
  13. W. Yuan, C. Yang, L. Qu, G. Ye, Q. V. H. Nguyen, and H. Yin, “Robust federated contrastive recommender system against model poisoning attack,” 2024.
  14. L. Qu, W. Yuan, R. Zheng, L. Cui, Y. Shi, and H. Yin, “Towards personalized privacy: User-governed data contribution for federated recommendation,” 2024.
  15. H. Yin, L. Qu, T. Chen, W. Yuan, R. Zheng, J. Long, X. Xia, Y. Shi, and C. Zhang, “On-device recommender systems: A comprehensive survey,” 2024.
  16. W. Yuan, C. Yang, L. Qu, Q. V. H. Nguyen, J. Li, and H. Yin, “Hide your model: A parameter transmission-free federated recommender system,” 2024.
  17. W. Yuan, L. Qu, L. Cui, Y. Tong, X. Zhou, and H. Yin, “Hetefedrec: Federated recommender systems with model heterogeneity,” 2023.
  18. L. Qu, N. Tang, R. Zheng, Q. V. H. Nguyen, Z. Huang, Y. Shi, and H. Yin, “Semi-decentralized federated ego graph learning for recommendation,” in Proceedings of the ACM Web Conference 2023, ser. WWW ’23.   New York, NY, USA: Association for Computing Machinery, 2023, p. 339–348. [Online]. Available: https://doi.org/10.1145/3543507.3583337
  19. R. Zheng, L. Qu, T. Chen, K. Zheng, Y. Shi, and H. Yin, “Poisoning decentralized collaborative recommender system and its countermeasures,” 2024.
  20. R. Zheng, L. Qu, T. Chen, L. Cui, Y. Shi, and H. Yin, “Decentralized collaborative learning with adaptive reference data for on-device poi recommendation,” 2024.
  21. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in Artificial intelligence and statistics.   PMLR, 2017, pp. 1273–1282.
  22. S. Warnat-Herresthal, H. Schultze, K. L. Shastry, S. Manamohan, S. Mukherjee, V. Garg, R. Sarveswara, K. Händler, P. Pickkers, N. A. Aziz et al., “Swarm learning for decentralized and confidential clinical machine learning,” Nature, vol. 594, no. 7862, pp. 265–270, 2021.
  23. O. L. Saldanha, P. Quirke, N. P. West, J. A. James, M. B. Loughrey, H. I. Grabsch, M. Salto-Tellez, E. Alwers, D. Cifci, N. Ghaffari Laleh et al., “Swarm learning for decentralized artificial intelligence in cancer histopathology,” Nature Medicine, vol. 28, no. 6, pp. 1232–1239, 2022.
  24. S. Warnat-Herresthal, H. Schultze, K. L. Shastry, S. Manamohan, S. Mukherjee, V. Garg, R. Sarveswara, K. Händler, P. Pickkers, N. A. Aziz et al., “Swarm learning as a privacy-preserving machine learning approach for disease classification,” BioRxiv, pp. 2020–06, 2020.
  25. J. Yang, L. Qu, Y. Shen, Y. Shi, S. Cheng, J. Zhao, and X. Shen, “Swarm intelligence in data science: applications, opportunities and challenges,” in International Conference on Swarm Intelligence.   Springer, 2020, pp. 3–14.
  26. J. Kennedy, “Swarm intelligence,” in Handbook of nature-inspired and innovative computing: integrating classical models with emerging technologies.   Springer, 2006, pp. 187–219.
  27. C. He, R. Cheng, Y. Tian, X. Zhang, K. C. Tan, and Y. Jin, “Paired offspring generation for constrained large-scale multiobjective optimization,” IEEE transactions on evolutionary computation, vol. 25, no. 3, pp. 448–462, 2020.
  28. C. He, R. Cheng, Y. Tian, and X. Zhang, “Iterated problem reformulation for evolutionary large-scale multiobjective optimization,” in 2020 IEEE Congress on Evolutionary Computation (CEC).   IEEE, 2020, pp. 1–8.
  29. C. He, H. Tan, S. Huang, and R. Cheng, “Efficient evolutionary neural architecture search by modular inheritable crossover,” Swarm and Evolutionary Computation, vol. 64, p. 100894, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2210650221000559
  30. Y. Shi, “Brain storm optimization algorithm,” in Advances in Swarm Intelligence: Second International Conference, ICSI 2011, Chongqing, China, June 12-15, 2011, Proceedings, Part I 2.   Springer, 2011, pp. 303–309.
  31. S. Cheng, Q. Qin, J. Chen, and Y. Shi, “Brain storm optimization algorithm: a review,” Artificial Intelligence Review, vol. 46, pp. 445–458, 2016.
  32. M. Becker, “Swarm learning for decentralized healthcare,” Der Hautarzt, vol. 73, no. 4, pp. 323–325, 2022.
  33. O. L. Saldanha, H. S. Muti, H. I. Grabsch, R. Langer, B. Dislich, M. Kohlruss, G. Keller, M. van Treeck, K. J. Hewitt, F. R. Kolbinger et al., “Direct prediction of genetic aberrations from pathology images in gastric cancer with swarm learning,” Gastric cancer, vol. 26, no. 2, pp. 264–274, 2023.
  34. X. Yuan, C. Sun, and S. Chen, “Cooperative dnn partitioning for accelerating dnn-empowered disease diagnosis via swarm reinforcement learning,” Applied Soft Computing, vol. 148, p. 110844, 2023.
  35. A. Demirkaya, J. Chen, and S. Oymak, “Exploring the role of loss functions in multiclass classification,” in 2020 54th annual conference on information sciences and systems (ciss).   IEEE, 2020, pp. 1–5.
  36. F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360, 2016.
  37. L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances in neural information processing systems, vol. 32, 2019.
  38. W. Liu, C. Chen, X. Liao, M. Hu, J. Yin, Y. Tan, and L. Zheng, “Federated probabilistic preference distribution modelling with compactness co-clustering for privacy-preserving multi-domain recommendation,” in Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, 2023, pp. 2206–2214.
  39. M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means algorithm: A comprehensive survey and performance evaluation,” Electronics, vol. 9, no. 8, p. 1295, 2020.
  40. J. Y. Choi, T. K. Yoo, J. G. Seo, J. Kwak, T. T. Um, and T. H. Rim, “Multi-categorical deep learning neural network to classify retinal images: A pilot study employing small database,” PloS one, vol. 12, no. 11, p. e0187336, 2017.
  41. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Advances in neural information processing systems, vol. 25, 2012.
  42. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  43. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2818–2826.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com