Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safe POMDP Online Planning among Dynamic Agents via Adaptive Conformal Prediction (2404.15557v2)

Published 23 Apr 2024 in cs.RO

Abstract: Online planning for partially observable Markov decision processes (POMDPs) provides efficient techniques for robot decision-making under uncertainty. However, existing methods fall short of preventing safety violations in dynamic environments. This work presents a novel safe POMDP online planning approach that maximizes expected returns while providing probabilistic safety guarantees amidst environments populated by multiple dynamic agents. Our approach utilizes data-driven trajectory prediction models of dynamic agents and applies Adaptive Conformal Prediction (ACP) to quantify the uncertainties in these predictions. Leveraging the obtained ACP-based trajectory predictions, our approach constructs safety shields on-the-fly to prevent unsafe actions within POMDP online planning. Through experimental evaluation in various dynamic environments using real-world pedestrian trajectory data, the proposed approach has been shown to effectively maintain probabilistic safety guarantees while accommodating up to hundreds of dynamic agents.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. M. Lauri, D. Hsu, and J. Pajarinen, “Partially observable markov decision processes in robotics: A survey,” IEEE Transactions on Robotics, 2022.
  2. S. Sheng, E. Pakdamanian, K. Han, Z. Wang, J. Lenneman, D. Parker, and L. Feng, “Planning for automated vehicles with human trust,” ACM Transactions on Cyber-Physical Systems, vol. 6, no. 4, pp. 1–21, 2022.
  3. P. Yu, S. Dong, S. Sheng, L. Feng, and M. Kwiatkowska, “Trust-aware motion planning for human-robot collaboration under distribution temporal logic specifications,” in International Conference on Robotics and Automation (ICRA), 2024.
  4. D. Silver and J. Veness, “Monte-carlo planning in large pomdps,” Advances in neural information processing systems, vol. 23, 2010.
  5. J. Lee, G.-H. Kim, P. Poupart, and K.-E. Kim, “Monte-carlo tree search for constrained pomdps,” Advances in Neural Information Processing Systems, vol. 31, 2018.
  6. M. Khonji, A. Jasour, and B. C. Williams, “Approximability of constant-horizon constrained pomdp.” in IJCAI, 2019, pp. 5583–5590.
  7. S. Sheng, D. Parker, and L. Feng, “Safe pomdp online planning via shielding,” in International Conference on Robotics and Automation (ICRA), 2024.
  8. A. Dixit, L. Lindemann, S. X. Wei, M. Cleaveland, G. J. Pappas, and J. W. Burdick, “Adaptive conformal prediction for motion planning among dynamic agents,” in Learning for Dynamics and Control Conference.   PMLR, 2023, pp. 300–314.
  9. Y. Wang, A. A. R. Newaz, J. D. Hernández, S. Chaudhuri, and L. E. Kavraki, “Online partial conditional plan synthesis for pomdps with safe-reachability objectives: Methods and experiments,” IEEE Transactions on Automation Science and Engineering, vol. 18, no. 3, pp. 932–945, 2021.
  10. G. Mazzi, A. Castellini, and A. Farinelli, “Risk-aware shielding of partially observable monte carlo planning policies,” Artificial Intelligence, vol. 324, p. 103987, 2023.
  11. A. Bauer, K. Klasing, G. Lidoris, Q. Mühlbauer, F. Rohrmüller, S. Sosnowski, T. Xu, K. Kühnlenz, D. Wollherr, and M. Buss, “The autonomous city explorer: Towards natural human-robot interaction in urban environments,” International journal of social robotics, vol. 1, pp. 127–140, 2009.
  12. R. Kümmerle, M. Ruhnke, B. Steder, C. Stachniss, and W. Burgard, “Autonomous robot navigation in highly populated pedestrian zones,” Journal of Field Robotics, vol. 32, no. 4, pp. 565–589, 2015.
  13. Y. Luo, P. Cai, A. Bera, D. Hsu, W. S. Lee, and D. Manocha, “Porca: Modeling and planning for autonomous driving among many pedestrians,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3418–3425, 2018.
  14. E. L. Zhu, F. L. Busch, J. Johnson, and F. Borrelli, “A gaussian process model for opponent prediction in autonomous racing,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2023, pp. 8186–8191.
  15. A. Farid, S. Veer, B. Ivanovic, K. Leung, and M. Pavone, “Task-relevant failure detection for trajectory predictors in autonomous vehicles,” in Conference on Robot Learning.   PMLR, 2023, pp. 1959–1969.
  16. A. N. Angelopoulos, S. Bates et al., “Conformal prediction: A gentle introduction,” Foundations and Trends® in Machine Learning, vol. 16, no. 4, pp. 494–591, 2023.
  17. M. Zaffran, O. Féron, Y. Goude, J. Josse, and A. Dieuleveut, “Adaptive conformal predictions for time series,” in International Conference on Machine Learning.   PMLR, 2022, pp. 25 834–25 866.
  18. L. Lindemann, M. Cleaveland, G. Shim, and G. J. Pappas, “Safe planning in dynamic environments using conformal prediction,” IEEE Robotics and Automation Letters, 2023.
  19. J. Sun, Y. Jiang, J. Qiu, P. Nobel, M. J. Kochenderfer, and M. Schwager, “Conformal prediction for uncertainty-aware planning with diffusion dynamics model,” Advances in Neural Information Processing Systems, vol. 36, 2024.
  20. J. Wang, J. Tong, K. Tan, Y. Vorobeychik, and Y. Kantaros, “Conformal temporal logic planning using large language models: Knowing when to do what and when to ask for help,” arXiv preprint arXiv:2309.10092, 2023.
  21. A. Z. Ren, A. Dixit, A. Bodrova, S. Singh, S. Tu, N. Brown, P. Xu, L. Takayama, F. Xia, J. Varley et al., “Robots that ask for help: Uncertainty alignment for large language model planners,” arXiv preprint arXiv:2307.01928, 2023.
  22. C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A survey of monte carlo tree search methods,” IEEE Transactions on Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43, 2012.
  23. S. Junges, N. Jansen, and S. A. Seshia, “Enforcing almost-sure reachability in POMDPs,” in International Conference on Computer Aided Verification.   Springer, 2021, pp. 602–625.
  24. J. Amirian, B. Zhang, F. V. Castro, J. J. Baldelomar, J.-B. Hayet, and J. Pettre, “Opentraj: Assessing prediction complexity in human trajectories datasets,” in Asian Conference on Computer Vision (ACCV), no. CONF.   Springer, 2020.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Shili Sheng (9 papers)
  2. Pian Yu (13 papers)
  3. David Parker (58 papers)
  4. Marta Kwiatkowska (98 papers)
  5. Lu Feng (69 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.