Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating the Efficacy of Large Language Models in Identifying Phishing Attempts (2404.15485v3)

Published 23 Apr 2024 in cs.CL and cs.AI

Abstract: Phishing, a prevalent cybercrime tactic for decades, remains a significant threat in today's digital world. By leveraging clever social engineering elements and modern technology, cybercrime targets many individuals, businesses, and organizations to exploit trust and security. These cyber-attackers are often disguised in many trustworthy forms to appear as legitimate sources. By cleverly using psychological elements like urgency, fear, social proof, and other manipulative strategies, phishers can lure individuals into revealing sensitive and personalized information. Building on this pervasive issue within modern technology, this paper aims to analyze the effectiveness of 15 LLMs in detecting phishing attempts, specifically focusing on a randomized set of "419 Scam" emails. The objective is to determine which LLMs can accurately detect phishing emails by analyzing a text file containing email metadata based on predefined criteria. The experiment concluded that the following models, ChatGPT 3.5, GPT-3.5-Turbo-Instruct, and ChatGPT, were the most effective in detecting phishing emails.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Het Patel (5 papers)
  2. Umair Rehman (5 papers)
  3. Farkhund Iqbal (4 papers)
Citations (2)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets