Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Helical trilayer graphene in magnetic field: Chern mosaic and higher Chern number ideal flat bands (2404.15452v2)

Published 23 Apr 2024 in cond-mat.mes-hall and cond-mat.str-el

Abstract: Helical trilayer graphene (hTG) exhibits a supermoir\'e pattern with large domains centered around stacking points ABA and BAB, where two well-separated low-energy bands appear with different total Chern numbers at each valley, forming a Chern mosaic pattern. In the chiral limit, the low-energy bands become exactly flat at zero energy for magic-angle twists. Here we investigate these zero-energy flat bands and their topological properties in the presence of a perpendicular magnetic field. We show that hTG retains the precise flatness of the zero-energy bands, even at finite magnetic fields. We find topological phase transitions at fields corresponding to unit and half magnetic flux leading to an emergence of higher Chern number flat bands. Consequently the Chern mosaic gets modified for finite magnetic fields. We further find the analytical forms of zero-energy wave functions and identify a set of hidden wave functions, which gives crucial insights into both the topological transitions and enhancement of Chern numbers across them. We also find topological transitions away from the chiral limit with finite corrugations and at different magic angles.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. E. Y. Andrei and A. H. MacDonald, Graphene bilayers with a twist, Nature Materials 19, 1265 (2020).
  2. Z.-D. Song and B. A. Bernevig, Magic-angle twisted bilayer graphene as a topological heavy fermion problem, Phys. Rev. Lett. 129, 047601 (2022).
  3. C. Mora, N. Regnault, and B. A. Bernevig, Flatbands and perfect metal in trilayer moiré graphene, Phys. Rev. Lett. 123, 026402 (2019).
  4. Y. Mao, D. Guerci, and C. Mora, Supermoiré low-energy effective theory of twisted trilayer graphene, Phys. Rev. B 107, 125423 (2023).
  5. J. Wang and Z. Liu, Hierarchy of ideal flatbands in chiral twisted multilayer graphene models, Phys. Rev. Lett. 128, 176403 (2022).
  6. D. Guerci, P. Simon, and C. Mora, Higher-order van hove singularity in magic-angle twisted trilayer graphene, Phys. Rev. Res. 4, L012013 (2022).
  7. D. Guerci, Y. Mao, and C. Mora, Chern mosaic and ideal flat bands in equal-twist trilayer graphene (2023b), arXiv:2305.03702 [cond-mat.mes-hall] .
  8. F. K. Popov and G. Tarnopolsky, Magic angles in equal-twist trilayer graphene, Phys. Rev. B 108, L081124 (2023a).
  9. N. Nakatsuji, T. Kawakami, and M. Koshino, Multiscale lattice relaxation in general twisted trilayer graphenes, Phys. Rev. X 13, 041007 (2023).
  10. P. J. Ledwith, A. Vishwanath, and D. E. Parker, Vortexability: A unifying criterion for ideal fractional chern insulators, Phys. Rev. B 108, 205144 (2023).
  11. J. Wang, S. Klevtsov, and Z. Liu, Origin of model fractional chern insulators in all topological ideal flatbands: Explicit color-entangled wave function and exact density algebra, Phys. Rev. Res. 5, 023167 (2023).
  12. X. Wang and O. Vafek, Narrow bands in magnetic field and strong-coupling hofstadter spectra, Phys. Rev. B 106, L121111 (2022).
  13. J. Herzog-Arbeitman, A. Chew, and B. A. Bernevig, Magnetic bloch theorem and reentrant flat bands in twisted bilayer graphene at 2⁢π2𝜋2\pi2 italic_π flux, Phys. Rev. B 106, 085140 (2022b).
  14. F. K. Popov and A. Milekhin, Hidden wave function of twisted bilayer graphene: The flat band as a landau level, Phys. Rev. B 103, 155150 (2021).
  15. G. Tarnopolsky, A. J. Kruchkov, and A. Vishwanath, Origin of magic angles in twisted bilayer graphene, Phys. Rev. Lett. 122, 106405 (2019).
  16. O. Vafek and J. Kang, Renormalization group study of hidden symmetry in twisted bilayer graphene with coulomb interactions, Phys. Rev. Lett. 125, 257602 (2020).
  17. D. Guerci, Y. Mao, and C. Mora, Nature of even and odd magic angles in helical twisted trilayer graphene (2023c), arXiv:2308.02638 [cond-mat.mes-hall] .
  18. F. K. Popov and G. Tarnopolsky, Magic angle butterfly in twisted trilayer graphene, Phys. Rev. Res. 5, 043079 (2023b).
  19. R. Bistritzer and A. H. MacDonald, Moiré butterflies in twisted bilayer graphene, Phys. Rev. B 84, 035440 (2011).
  20. K. Hejazi, C. Liu, and L. Balents, Landau levels in twisted bilayer graphene and semiclassical orbits, Phys. Rev. B 100, 035115 (2019).
  21. P. Streda, Theory of quantised hall conductivity in two dimensions, Journal of Physics C: Solid State Physics 15, L717 (1982).
  22. M. F. Atiyah and I. M. Singer, The index of elliptic operators: Iii, Annals of Mathematics 87, 546 (1968).
  23. B. Estienne, N. Regnault, and V. Crépel, Ideal chern bands as landau levels in curved space, Phys. Rev. Res. 5, L032048 (2023).
  24. P. J. Ledwith, E. Khalaf, and A. Vishwanath, Strong coupling theory of magic-angle graphene: A pedagogical introduction, Annals of Physics 435, 168646 (2021), special issue on Philip W. Anderson.
  25. J. Liu, J. Liu, and X. Dai, Pseudo landau level representation of twisted bilayer graphene: Band topology and implications on the correlated insulating phase, Phys. Rev. B 99, 155415 (2019).
  26. F. D. M. Haldane and E. H. Rezayi, Periodic laughlin-jastrow wave functions for the fractional quantized hall effect, Phys. Rev. B 31, 2529 (1985).
Citations (4)

Summary

We haven't generated a summary for this paper yet.