Proof of a Universal Speed Limit on Fast Scrambling in Quantum Systems (2404.15403v1)
Abstract: We prove that the time required for sustained information scrambling in any Hamiltonian quantum system is universally at least logarithmic in the entanglement entropy of scrambled states. This addresses two foundational problems in nonequilibrium quantum dynamics. (1) It sets the earliest possible time for the applicability of equilibrium statistical mechanics in a quantum system coupled to a bath at a finite temperature. (2) It proves a version of the fast scrambling conjecture, originally motivated in models associated with black holes, as a fundamental property of quantum mechanics itself. Our result builds on a refinement of the energy-time uncertainty principle in terms of the infinite temperature spectral form factor in quantum chaos. We generalize this formulation to arbitrary initial states of the bath, including finite temperature states, by mapping Hamiltonian dynamics with any initial state to nonunitary dynamics at infinite temperature. A regularized spectral form factor emerges naturally from this procedure, whose decay is universally constrained by analyticity in complex time. This establishes an exact speed limit on information scrambling by the most general quantum mechanical Hamiltonian, without any restrictions on locality or the nature of interactions.
- J. von Neumann, Proof of the ergodic theorem and the H-theorem in quantum mechanics. translation of: Beweis des ergodensatzes und des H-Theorems in der neuen mechanik, Eur. Phys. J. H 35, 201 (2010), Original (in German): Zeit. für Phys. 57, 30 (1929).
- S. Popescu, A. J. Short, and A. Winter, Entanglement and the foundations of statistical mechanics, Nat. Phys. 2, 754 (2006).
- R. Nandkishore and D. A. Huse, Many-body localization and thermalization in quantum statistical mechanics, Annu. Rev. Condens. Matter Phys. 6, 15 (2015).
- Z. Gong and R. Hamazaki, Bounds in nonequilibrium quantum dynamics, Int. J. Mod. Phys. B. 36 (2022).
- P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, J. High Energy Phys. 2007 (09), 120.
- Y. Sekino and L. Susskind, Fast scramblers, J. High Energy Phys. 2008 (10), 065.
- J. Maldacena, S. H. Shenker, and D. Stanford, A bound on chaos, J. High Energy Phys. 2016 (8), 1.
- J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94, 106002 (2016).
- G. Bentsen, Y. Gu, and A. Lucas, Fast scrambling on sparse graphs, Proc. Natl. Acad. Sci. U.S.A. 116, 6689 (2019).
- A. Vikram and V. Galitski, Dynamical quantum ergodicity from energy level statistics, Phys. Rev. Res. 5, 033126 (2023).
- A. Vikram and V. Galitski, Exact universal bounds on quantum dynamics and fast scrambling, Phys. Rev. Lett. 132, 040402 (2024).
- M. L. Mehta, Random matrices (Elsevier, 2004).
- A. Dymarsky, N. Lashkari, and H. Liu, Subsystem eigenstate thermalization hypothesis, Phys. Rev. E 97, 012140 (2018).
- See the Supplemental Material for a detailed derivation of various results.
- D. E. Knuth, Big omicron and big omega and big theta, ACM Sigact News 8, 18 (1976).
- P. Bocchieri and A. Loinger, Quantum recurrence theorem, Phys. Rev. 107, 337 (1957).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2010).
- A. Lucas, Quantum many-body dynamics on the star graph, arXiv preprint arXiv:1903.01468 (2019).
- C.-F. Chen, A. Lucas, and C. Yin, Speed limits and locality in many-body quantum dynamics, Rep. Prog. Phys. (2023).
- Y. Nakata and M. Tezuka, Hayden-Preskill recovery in Hamiltonian systems, arXiv preprint arXiv:2303.02010 (2023).
- P. Kos, B. Bertini, and T. Prosen, Chaos and ergodicity in extended quantum systems with noisy driving, Phys. Rev. Lett. 126, 190601 (2021).
- T. Can, Random Lindblad dynamics, J. Phys. A: Math. Theor. 52, 485302 (2019).
- L. Shou, A. Vikram, and V. Galitski, Spectral anomalies and broken symmetries in maximally chaotic quantum maps, arXiv preprint arXiv:2312.14067 (2023).
- A. del Campo, J. Molina-Vilaplana, and J. Sonner, Scrambling the spectral form factor: unitarity constraints and exact results, Phys. Rev. D 95, 126008 (2017).
- Y. Liao and V. Galitski, Emergence of many-body quantum chaos via spontaneous breaking of unitarity, Phys. Rev. B 105, L140202 (2022).
- P. Martinez-Azcona and A. Chenu, Analyticity constraints bound the decay of the spectral form factor, Quantum 6, 852 (2022).
- A. S. Matsoukas-Roubeas, T. Prosen, and A. del Campo, Quantum chaos and coherence: Random parametric quantum channels, arXiv preprint arXiv:2305.19326 (2023a).
- G. Bunin, L. Foini, and J. Kurchan, Fisher zeroes and the fluctuations of the spectral form factor of chaotic systems, arXiv preprint arXiv:2207.02473 (2022).
- L. Ahlfors and M. Heins, Questions of regularity connected with the Phragmén-Lindelöf principle, Ann. of Math. (2) 50, 341 (1949).
- W. K. Hayman, Questions of regularity connected with the Phragmén-Lindelöf principle, J. Math. Pures Appl. (9) 35, 115 (1956).
- P. Reimann, Typical fast thermalization processes in closed many-body systems, Nat. Comm. 7, 10821 (2016).
- I. V. Ostrovskiĭ, A certain class of characteristic functions, Trudy Mat. Inst. Steklov. 111, 195 (1970).
- J. Cotler and N. Hunter-Jones, Spectral decoupling in many-body quantum chaos, J. High Energy Phys. 2020 (12), 1.
- A. Georges, O. Parcollet, and S. Sachdev, Quantum fluctuations of a nearly critical Heisenberg spin glass, Phys. Rev. B 63, 134406 (2001).
- S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105, 151602 (2010).
- S. Sachdev, Bekenstein-Hawking entropy and strange metals, Phys. Rev. X 5, 041025 (2015).
- J. Kurchan, Time-reparametrization invariance: from glasses to toy black holes, arXiv preprint arXiv:2401.03186 (2024).
- S. Zelditch, Quantum ergodicity and mixing, arXiv preprint math-ph/0503026 (2005).
- (In preparation) Mathematical note on quantum scrambling bounds.
- L. D. Landau and E. M. Lifshitz, Statistical Physics, Vol. 5 (Elsevier, 1980).
- L. E. Reichl, A modern course in statistical physics (John Wiley & Sons, 2016).
- J. D. Jackson, Classical electrodynamics (John Wiley & Sons, 1998).
- R. V. Churchill and J. W. Brown, Complex variables and applications, 4th ed. (McGraw-Hill Book Co., New York, 1984).
- The mpmath development team, mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.3.0) (2023), https://mpmath.org/.