Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Naïve Bayes and Random Forest for Crop Yield Prediction (2404.15392v1)

Published 23 Apr 2024 in cs.LG and cs.AI

Abstract: This study analyzes crop yield prediction in India from 1997 to 2020, focusing on various crops and key environmental factors. It aims to predict agricultural yields by utilizing advanced machine learning techniques like Linear Regression, Decision Tree, KNN, Na\"ive Bayes, K-Mean Clustering, and Random Forest. The models, particularly Na\"ive Bayes and Random Forest, demonstrate high effectiveness, as shown through data visualizations. The research concludes that integrating these analytical methods significantly enhances the accuracy and reliability of crop yield predictions, offering vital contributions to agricultural data science.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets