Advanced simulation-based predictive modelling for solar irradiance sensor farms (2404.15324v1)
Abstract: As solar power continues to grow and replace traditional energy sources, the need for reliable forecasting models becomes increasingly important to ensure the stability and efficiency of the grid. However, the management of these models still needs to be improved, and new tools and technologies are required to handle the deployment and control of solar facilities. This work introduces a novel framework named Cloud-based Analysis and Integration for Data Efficiency (CAIDE), designed for real-time monitoring, management, and forecasting of solar irradiance sensor farms. CAIDE is designed to manage multiple sensor farms simultaneously while improving predictive models in real-time using well-grounded Modeling and Simulation (M&S) methodologies. The framework leverages Model Based Systems Engineering (MBSE) and an Internet of Things (IoT) infrastructure to support the deployment and analysis of solar plants in dynamic environments. The system can adapt and re-train the model when given incorrect results, ensuring that forecasts remain accurate and up-to-date. Furthermore, CAIDE can be executed in sequential, parallel, and distributed architectures, assuring scalability. The effectiveness of CAIDE is demonstrated in a complex scenario composed of several solar irradiance sensor farms connected to a centralized management system. Our results show that CAIDE is scalable and effective in managing and forecasting solar power production while improving the accuracy of predictive models in real time. The framework has important implications for the deployment of solar plants and the future of renewable energy sources.
- \APACrefYearMonthDay2017. \BBOQ\APACrefatitleSolar irradiance forecasting using deep neural networks Solar irradiance forecasting using deep neural networks.\BBCQ \APACjournalVolNumPagesProcedia Computer Science114304–313. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2017. \BBOQ\APACrefatitleShort-term solar radiation forecasting by advecting and diffusing MSG cloud index Short-term solar radiation forecasting by advecting and diffusing msg cloud index.\BBCQ \APACjournalVolNumPagesSolar Energy1551092–1103. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2018. \BBOQ\APACrefatitleNowcasting solar irradiance using an analog method and geostationary satellite images Nowcasting solar irradiance using an analog method and geostationary satellite images.\BBCQ \APACjournalVolNumPagesSolar Energy164301–315. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2008. \BBOQ\APACrefatitleModel-Based Monitoring for Early Warning Flood Detection Model-based monitoring for early warning flood detection.\BBCQ \BIn \APACrefbtitleProceedings of the 6th ACM Conference on Embedded Network Sensor Systems Proceedings of the 6th acm conference on embedded network sensor systems (\BPG 295–308). \APACaddressPublisherNew York, NY, USAAssociation for Computing Machinery. {APACrefURL} \urlhttps://doi.org/10.1145/1460412.1460442 {APACrefDOI} 10.1145/1460412.1460442 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021\APACmonth06. \APACrefbtitleNet Zero by 2050: A Roadmap for the Global Energy Sector. Net zero by 2050: A roadmap for the global energy sector. \APAChowpublishedhttps://trid.trb.org/view/1856381. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleOutlier Detection: Methods, Models, and Classification Outlier detection: Methods, models, and classification.\BBCQ \APACjournalVolNumPagesACM Computing Surveys. {APACrefDOI} 10.1145/3381028 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleDiscrete event modeling and simulation for reinforcement learning system design Discrete event modeling and simulation for reinforcement learning system design.\BBCQ \APACjournalVolNumPagesInformation133121. \PrintBackRefs\CurrentBib
- \APACinsertmetastarClark2016{APACrefauthors}Clark, M\BPBIR. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleOn the variability of near-surface screen temperature anomalies in the 20 March 2015 solar eclipse On the variability of near-surface screen temperature anomalies in the 20 march 2015 solar eclipse.\BBCQ \APACjournalVolNumPagesPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences374207720150213. \PrintBackRefs\CurrentBib
- \APACinsertmetastarEUSolar\APACrefbtitleEU Solar Energy Strategy EU Solar Energy Strategy \APACbVolEdTR\BTR. \APACrefYearMonthDay2022. \APACaddressInstitutionEuropean Commission, 1049 Bruxelles/Brussel, BelgiumEuropean Commission. \APAChowpublishedhttps://energy.ec.europa.eu/topics/renewable-energy/solar-energy_en. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2024. \BBOQ\APACrefatitleThe value of solar forecasts and the cost of their errors: A review The value of solar forecasts and the cost of their errors: A review.\BBCQ \APACjournalVolNumPagesRenewable and Sustainable Energy Reviews189113915. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitleExtended Isolation Forest Extended isolation forest.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Knowledge and Data Engineering3341479-1489. {APACrefDOI} 10.1109/TKDE.2019.2947676 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleEfficient micro data centres deployment for mobile healthcare monitoring systems in IoT urban scenarios Efficient micro data centres deployment for mobile healthcare monitoring systems in iot urban scenarios.\BBCQ \APACjournalVolNumPagesJournal of Simulation1–15. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2004. \BBOQ\APACrefatitleA survey of outlier detection methodologies A survey of outlier detection methodologies.\BBCQ \APACjournalVolNumPagesArtificial intelligence review2285–126. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitleDesign and simulation of standalone solar PV system using PVsyst software: a case study Design and simulation of standalone solar PV system using PVsyst software: a case study.\BBCQ \APACjournalVolNumPagesMaterials Today: Proceedings465322–5328. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleReview and validation of photovoltaic solar simulation tools/software based on case study Review and validation of photovoltaic solar simulation tools/software based on case study.\BBCQ \APACjournalVolNumPagesOpen Physics201431–451. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA flexible and robust deep learning-based system for solar irradiance forecasting A flexible and robust deep learning-based system for solar irradiance forecasting.\BBCQ \APACjournalVolNumPagesIEEE Access912348–12361. {APACrefDOI} 10.1109/ACCESS.2021.3051839 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021\APACmonth09. \BBOQ\APACrefatitlePredicción espacio-temporal: más allá del error/precisión Predicción espacio-temporal: más allá del error/precisión.\BBCQ \BIn \APACrefbtitleCongreso Español de Informática 2021 (CEDI’21). Congreso español de informática 2021 (cedi’21). \APACaddressPublisherMálaga, Spain. {APACrefDOI} 10.5281/zenodo.5530048 \PrintBackRefs\CurrentBib
- \APACinsertmetastarRatedPower\APACrefbtitleRatedPower software tool. RatedPower software tool. \APACrefYearMonthDay2023. \APAChowpublishedhttps://ratedpower.com. {APACrefURL} \urlhttps://ratedpower.com \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2023. \BBOQ\APACrefatitleSimulation-driven engineering for the management of harmful algal and cyanobacterial blooms Simulation-driven engineering for the management of harmful algal and cyanobacterial blooms.\BBCQ \APACjournalVolNumPagesSIMULATION. {APACrefDOI} 10.1177/00375497231184246 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA Unified Cloud-Enabled Discrete Event Parallel and Distributed Simulation Architecture A unified cloud-enabled discrete event parallel and distributed simulation architecture.\BBCQ \APACjournalVolNumPagesSimulation Modelling Practice and Theory. {APACrefDOI} 10.1016/j.simpat.2022.102539 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitlexDEVS: A toolkit for interoperable modeling and simulation of formal discrete event systems xDEVS: A toolkit for interoperable modeling and simulation of formal discrete event systems.\BBCQ \APACjournalVolNumPagesSoftw: Pract and Exper. {APACrefDOI} 10.1002/spe.3168 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2010March. \APACrefbtitleOahu Solar Measurement Grid (1-Year Archive): 1-Second Solar Irradiance; Oahu, Hawaii (Data). Oahu Solar Measurement Grid (1-Year Archive): 1-Second Solar Irradiance; Oahu, Hawaii (Data). \APAChowpublishedhttps://midcdmz.nrel.gov/apps/sitehome.pl?site=OAHUGRID. \APACrefnoteType: dataset (last accessed 22/6/2023) {APACrefDOI} 10.5439/1052451 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2019. \BBOQ\APACrefatitleImpact of bird dropping deposition on solar photovoltaic module performance: a systematic study in Western Rajasthan Impact of bird dropping deposition on solar photovoltaic module performance: a systematic study in western rajasthan.\BBCQ \APACjournalVolNumPagesEnvironmental Science and Pollution Research263031119–31132. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitleReal-Time Anomaly Detection Using Facebook Prophet Real-time anomaly detection using facebook prophet.\BBCQ \APACjournalVolNumPagesInternational Journal of Natural Computing Research10329–40. {APACrefDOI} 10.4018/IJNCR.2021070103 \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2023. \BBOQ\APACrefatitleEmploying long short-term memory and Facebook prophet model in air temperature forecasting Employing long short-term memory and facebook prophet model in air temperature forecasting.\BBCQ \APACjournalVolNumPagesCommunications in Statistics-Simulation and Computation522279–290. \PrintBackRefs\CurrentBib
- \APACrefYear2020. \APACrefbtitleHands-on Time Series Analysis with Python: From Basics to Bleeding Edge Techniques Hands-on time series analysis with python: From basics to bleeding edge techniques. \APACaddressPublisherApress. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2019. \BBOQ\APACrefatitleRobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series Robuststl: A robust seasonal-trend decomposition algorithm for long time series.\BBCQ \APACjournalVolNumPagesProceedings of the AAAI Conference on Artificial Intelligence33015409-5416. \PrintBackRefs\CurrentBib
- \APACinsertmetastarYang2019{APACrefauthors}Yang, D. \APACrefYearMonthDay2019. \BBOQ\APACrefatitleA guideline to solar forecasting research practice: Reproducible, operational, probabilistic or physically-based, ensemble, and skill (ROPES) A guideline to solar forecasting research practice: Reproducible, operational, probabilistic or physically-based, ensemble, and skill (ropes).\BBCQ \APACjournalVolNumPagesJournal of Renewable and Sustainable Energy112022701. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2014. \BBOQ\APACrefatitleA weather-based hybrid method for 1-day ahead hourly forecasting of PV power output A weather-based hybrid method for 1-day ahead hourly forecasting of pv power output.\BBCQ \APACjournalVolNumPagesIEEE transactions on sustainable energy53917–926. \PrintBackRefs\CurrentBib
- \APACrefYear2018. \APACrefbtitleTheory of modeling and simulation: discrete event & iterative system computational foundations Theory of modeling and simulation: discrete event & iterative system computational foundations. \APACaddressPublisherAcademic press. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2018. \BBOQ\APACrefatitleModeling and simulation of high-frequency solar irradiance Modeling and simulation of high-frequency solar irradiance.\BBCQ \APACjournalVolNumPagesIEEE Journal of Photovoltaics91124–131. \PrintBackRefs\CurrentBib