Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characteristics-Based Design of Generalized-Exponent Bandpass Filters (2404.15321v2)

Published 5 Apr 2024 in eess.SP, cs.SD, and eess.AS

Abstract: We develop characteristics-based design methods for a class of IIR bandpass filters which we refer to as Generalized Exponent Filters (GEFs) and that are represented as second order filters raised to non-unitary exponents. GEFs have a peak, are effectively linear phase, and may be used for phase-picking for seismic signals, cochlear implants, rainbow sensors, and equalizers. The native specifications for GEFs are not on a given frequency response but rather on filter characteristics such as peak frequency, quality factor, and group delay. Our characteristics-based method for design accommodates direct specification of a trio of frequency-domain characteristics from amongst the peak frequency, 3dB quality factor, equivalent rectangular bandwidth, maximum group delay, and phase accumulation. We achieve this by deriving parameterizations for the filters in terms of sets of filter characteristics which involves deriving closed-form analytic expressions mapping sets of filter characteristics to the original filter constants by making sharp-filter approximations. This results in parameterizations for GEFs including mixed parameterizations based on simultaneous specification of magnitude-based characteristics (e.g. bandwidths) and phase-based characteristics (e.g. group delays) which enables designing sharply tuned filters without significant group delay and simultaneous control over frequency selectivity and synchronization which is important in designing filterbanks. Our design methods with direct control over characteristics may also be utilized for higher-order variable bandpass filter design and may be useful for characteristics-based adaptive filtering. Our methods are inherently stable, highly accurate in meeting strict specifications on desired characteristics, and computationally efficient. The methods extend to the design of related bandpass, multiband filters, and filterbanks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. W.-S. Lu and T. Hinamoto, “Design of least-squares and minimax composite filters,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 3, pp. 982–991, 2017.
  2. M. F. S. Gálvez, S. J. Elliott, and J. Cheer, “Time domain optimization of filters used in a loudspeaker array for personal audio,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 23, no. 11, pp. 1869–1878, 2015.
  3. D. N. Milic, E. Avignon-Meseldzija, J. A. Anastasov, H. Meliani, and A. Benlarbi-Delaï, “A robust algorithm for the design of wideband positive-slope linear group delay filters,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 10, pp. 4258–4271, 2022.
  4. S. Nordebo, I. Claesson, and M. Dahl, “On the use of remes multiple exchange algorithm for linear-phase fir filters with general specifications,” IEEE Transactions on Education, vol. 43, no. 4, pp. 460–463, 2000.
  5. A. S. Alkhairy, K. G. Christian, and J. S. Lim, “Design and characterization of optimal fir filters with arbitrary phase,” IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 559–572, 1993.
  6. A. Alkhairy, “Design of optimal iir filters with arbitrary magnitude,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 42, no. 9, pp. 618–620, 1995.
  7. W. Chen, M. Huang, and X. Lou, “Design of sparse fir filters with reduced effective length,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 4, pp. 1496–1506, 2018.
  8. C. Dai, W. Chen, and Y. Zhu, “Seeker optimization algorithm for digital iir filter design,” IEEE transactions on industrial electronics, vol. 57, no. 5, pp. 1710–1718, 2009.
  9. N. Karaboga, “Digital iir filter design using differential evolution algorithm,” EURASIP Journal on Advances in Signal Processing, vol. 2005, pp. 1–8, 2005.
  10. G. Pepe, L. Gabrielli, S. Squartini, L. Cattani, and C. Tripodi, “Gravitational search algorithm for iir filter-based audio equalization,” in 2020 28th European Signal Processing Conference (EUSIPCO), pp. 496–500, IEEE, 2021.
  11. G. Pepe, L. Gabrielli, S. Squartini, C. Tripodi, and N. Strozzi, “Deep optimization of parametric iir filters for audio equalization,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 30, pp. 1136–1149, 2022.
  12. S. A. Alkhairy, “Rational-exponent filters with applications to generalized auditory filterbanks,” IEEE Transactions on Circuits and Systems I: Regular Papers, submitted.
  13. T. Jiang and J. Zheng, “Automatic phase picking from microseismic recordings using feature extraction and neural network,” IEEE Access, vol. 8, pp. 58271–58278, 2020.
  14. A. A. Dibazar, S. George, and T. W. Berger, “Statistical spiking model for real world pattern recognition applications,” in The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–4, IEEE, 2010.
  15. Z. K. Abdul, A. K. Al-Talabani, and D. O. Ramadan, “A hybrid temporal feature for gear fault diagnosis using the long short term memory,” IEEE Sensors Journal, vol. 20, no. 23, pp. 14444–14452, 2020.
  16. A. Karlos and S. J. Elliott, “Cochlea-inspired design of an acoustic rainbow sensor with a smoothly varying frequency response,” Scientific Reports, vol. 10, no. 1, p. 10803, 2020.
  17. W. Zhang, Y. Wu, D. Wang, Y. Wang, Y. Wang, and L. Zhang, “Underwater target feature extraction and classification based on gammatone filter and machine learning,” in 2018 international conference on wavelet analysis and pattern recognition (ICWAPR), pp. 42–47, IEEE, 2018.
  18. S. Cosentino, T. H. Falk, D. McAlpine, and T. Marquardt, “Cochlear implant filterbank design and optimization: A simulation study,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 22, no. 2, pp. 347–353, 2013.
  19. T. Harczos, A. Chilian, and P. Husar, “Making use of auditory models for better mimicking of normal hearing processes with cochlear implants: the sam coding strategy,” IEEE transactions on biomedical circuits and systems, vol. 7, no. 4, pp. 414–425, 2012.
  20. G. Yang, R. F. Lyon, and E. M. Drakakis, “A 6 uw per channel analog biomimetic cochlear implant processor filterbank architecture with across channels agc,” IEEE transactions on biomedical circuits and systems, vol. 9, no. 1, pp. 72–86, 2014.
  21. F. Alías, J. C. Socoró, and X. Sevillano, “A review of physical and perceptual feature extraction techniques for speech, music and environmental sounds,” Applied Sciences, vol. 6, no. 5, p. 143, 2016.
  22. S. Kortlang, S. D. Ewert, and T. Gerkmann, “Single channel noise reduction based on an auditory filterbank,” in 2014 14th International Workshop on Acoustic Signal Enhancement (IWAENC), pp. 283–287, IEEE, 2014.
  23. D. M. Agrawal, H. B. Sailor, M. H. Soni, and H. A. Patil, “Novel teo-based gammatone features for environmental sound classification,” in 2017 25th European Signal Processing Conference (EUSIPCO), pp. 1809–1813, IEEE, 2017.
  24. A. Badi, K. Ko, and H. Ko, “Bird sounds classification by combining pncc and robust mel-log filter bank features,” The Journal of the Acoustical Society of Korea, vol. 38, no. 1, pp. 39–46, 2019.
  25. M. M. Milani, M. Ramashini, and M. Krishani, “Speech signal analysis of covid-19 patients via machine learning approach,” in 2021 International Conference on Decision Aid Sciences and Application (DASA), pp. 314–319, IEEE, 2021.
  26. B. Alexander, G. Nallathambi, and N. Selvaraj, “Screening of heart sounds using hidden markov and gammatone filterbank models,” in 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1460–1465, IEEE, 2018.
  27. Z. Neili and K. Sundaraj, “A comparative study of the spectrogram, scalogram, melspectrogram and gammatonegram time-frequency representations for the classification of lung sounds using the icbhi database based on cnns,” Biomedical Engineering/Biomedizinische Technik, vol. 67, no. 5, pp. 367–390, 2022.
  28. C. Zhou, Y. Wu, Z. Fan, X. Zhang, D. Wu, and Z. Tao, “Gammatone spectral latitude features extraction for pathological voice detection and classification,” Applied Acoustics, vol. 185, p. 108417, 2022.
  29. D. A. Hague, J. R. Buck, and I. Bilik, “A deterministic compressive sensing model for bat biosonar,” The Journal of the Acoustical Society of America, vol. 132, no. 6, pp. 4041–4052, 2012.
  30. Z. Tu, N. Ma, and J. Barker, “Dhasp: Differentiable hearing aid speech processing,” in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 296–300, IEEE, 2021.
  31. T. Zhang, F. Mustiere, and C. Micheyl, “Intelligent hearing aids: The next revolution,” in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 72–76, IEEE, 2016.
  32. N. Jankovic, V. Crnojevic-Bengin, P. Meyer, and J.-S. Hong, “Design methods of multi-band filters,” Advances in Multi-Band Microstrip Filters, pp. 5–66, 2015.
  33. W. Feng, C. Wang, X. Chen, Y. Shi, M. Jiang, and D. Wang, “Filter realization of the time-domain average denoising method for a mechanical signal,” Shock and Vibration, vol. 2021, pp. 1–13, 2021.
  34. S. A. Alkhairy and C. A. Shera, “An analytic physically motivated model of the mammalian cochlea,” The Journal of the Acoustical Society of America, vol. 145, no. 1, pp. 45–60, 2019.
  35. C. J. Galbraith, R. D. White, L. Cheng, K. Grosh, and G. M. Rebeiz, “Cochlea-based rf channelizing filters,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 4, pp. 969–979, 2008.
  36. A. G. Katsiamis, E. M. Drakakis, and R. F. Lyon, “Practical gammatone-like filters for auditory processing,” EURASIP Journal on Audio, Speech, and Music Processing, vol. 2007, pp. 1–15, 2007.
  37. K. K. Charaziak and A. Altoè, “Estimating cochlear impulse responses using frequency sweeps,” The Journal of the Acoustical Society of America, vol. 153, no. 4, pp. 2251–2251, 2023.
  38. S. A. Alkhairy, An analytic model of the cochlea and functional interpretations. PhD thesis, Massachusetts Institute of Technology, 2017.
  39. S. A. Alkhairy, “Cochlear wave propagation and dynamics in the human base and apex: Model-based estimates from noninvasive measurements,” in Nonlinearity and Hearing: Advances in theory and experiment: Proceedings of the 14th International Mechanics of Hearing Workshop, AIP Publishing, 2022.
  40. C. A. Shera and J. J. Guinan Jr, “Stimulus-frequency-emission group delay: A test of coherent reflection filtering and a window on cochlear tuning,” The Journal of the Acoustical Society of America, vol. 113, no. 5, pp. 2762–2772, 2003.
Citations (1)

Summary

We haven't generated a summary for this paper yet.