Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey of Decomposition-Based Evolutionary Multi-Objective Optimization: Part I-Past and Future (2404.14571v2)

Published 22 Apr 2024 in cs.NE

Abstract: Decomposition has been the mainstream approach in classic mathematical programming for multi-objective optimization and multi-criterion decision-making. However, it was not properly studied in the context of evolutionary multi-objective optimization (EMO) until the development of multi-objective evolutionary algorithm based on decomposition (MOEA/D). In this two-part survey series, we use MOEA/D as the representative of decomposition-based EMO to review the up-to-date development in this area, and systematically and comprehensively analyze its research landscape. In the first part, we present a comprehensive survey of the development of MOEA/D from its origin to the current state-of-the-art approaches. In order to be self-contained, we start with a step-by-step tutorial that aims to help a novice quickly get onto the working mechanism of MOEA/D. Then, selected major developments of MOEA/D are reviewed according to its core design components including weight vector settings, subproblem formulations, selection mechanisms and reproduction operators. Besides, we also overview some selected advanced topics for constraint handling, optimization in dynamic and uncertain environments, computationally expensive objective functions, and preference incorporation. In the final part, we shed some light on emerging directions for future developments.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Ke Li (722 papers)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets