Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Direct observation of Floquet-Bloch states in monolayer graphene (2404.14392v1)

Published 22 Apr 2024 in cond-mat.mes-hall and cond-mat.other

Abstract: Floquet engineering is a novel method of manipulating quantum phases of matter via periodic driving [1, 2]. It has successfully been utilized in different platforms ranging from photonic systems [3] to optical lattice of ultracold atoms [4, 5]. In solids, light can be used as the periodic drive via coherent light-matter interaction. This leads to hybridization of Bloch electrons with photons resulting in replica bands known as Floquet-Bloch states. After the direct observation of Floquet-Bloch states in a topological insulator [6], their manifestations have been seen in a number of other experiments [7-14]. By engineering the electronic band structure using Floquet-Bloch states, various exotic phase transitions have been predicted [15-22] to occur. To realize these phases, it is necessary to better understand the nature of Floquet-Bloch states in different materials. However, direct energy and momentum resolved observation of these states is still limited to only few material systems [6, 10, 14, 23, 24]. Here, we report direct observation of Floquet-Bloch states in monolayer epitaxial graphene which was the first proposed material platform [15] for Floquet engineering. By using time- and angle-resolved photoemission spectroscopy (trARPES) with mid-infrared (mid-IR) pump excitation, we detected replicas of the Dirac cone. Pump polarization dependence of these replica bands unequivocally shows that they originate from the scattering between Floquet-Bloch states and photon-dressed free-electron-like photoemission final states, called Volkov states. Beyond graphene, our method can potentially be used to directly observe Floquet-Bloch states in other systems paving the way for Floquet engineering in a wide range of quantum materials.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. de la Torre, A. et al. Colloquium: Nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 93, 041002 (2021). [2] Bao, C., Tang, P., Sun, D. & Zhou, S. Light-induced emergent phenomena in 2d materials and topological materials. Nat. Rev. Phys. 4, 33–48 (2022). [3] Rechtsman, M. C. et al. Photonic floquet topological insulators. Nature 496, 196–200 (2013). [4] Jotzu, G. et al. Experimental realization of the topological haldane model with ultracold fermions. Nature 515, 237–240 (2014). [5] Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017). [6] Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of floquet-bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). [7] Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Bao, C., Tang, P., Sun, D. & Zhou, S. Light-induced emergent phenomena in 2d materials and topological materials. Nat. Rev. Phys. 4, 33–48 (2022). [3] Rechtsman, M. C. et al. Photonic floquet topological insulators. Nature 496, 196–200 (2013). [4] Jotzu, G. et al. Experimental realization of the topological haldane model with ultracold fermions. Nature 515, 237–240 (2014). [5] Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017). [6] Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of floquet-bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). [7] Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Rechtsman, M. C. et al. Photonic floquet topological insulators. Nature 496, 196–200 (2013). [4] Jotzu, G. et al. Experimental realization of the topological haldane model with ultracold fermions. Nature 515, 237–240 (2014). [5] Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017). [6] Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of floquet-bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). [7] Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Jotzu, G. et al. Experimental realization of the topological haldane model with ultracold fermions. Nature 515, 237–240 (2014). [5] Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017). [6] Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of floquet-bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). [7] Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017). [6] Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of floquet-bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). [7] Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of floquet-bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). [7] Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  2. Light-induced emergent phenomena in 2d materials and topological materials. Nat. Rev. Phys. 4, 33–48 (2022). [3] Rechtsman, M. C. et al. Photonic floquet topological insulators. Nature 496, 196–200 (2013). [4] Jotzu, G. et al. Experimental realization of the topological haldane model with ultracold fermions. Nature 515, 237–240 (2014). [5] Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017). [6] Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of floquet-bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). [7] Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Rechtsman, M. C. et al. Photonic floquet topological insulators. Nature 496, 196–200 (2013). [4] Jotzu, G. et al. Experimental realization of the topological haldane model with ultracold fermions. Nature 515, 237–240 (2014). [5] Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017). [6] Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of floquet-bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). [7] Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Jotzu, G. et al. Experimental realization of the topological haldane model with ultracold fermions. Nature 515, 237–240 (2014). [5] Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017). [6] Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of floquet-bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). [7] Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017). [6] Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of floquet-bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). [7] Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of floquet-bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). [7] Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  3. Rechtsman, M. C. et al. Photonic floquet topological insulators. Nature 496, 196–200 (2013). [4] Jotzu, G. et al. Experimental realization of the topological haldane model with ultracold fermions. Nature 515, 237–240 (2014). [5] Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017). [6] Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of floquet-bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). [7] Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Jotzu, G. et al. Experimental realization of the topological haldane model with ultracold fermions. Nature 515, 237–240 (2014). [5] Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017). [6] Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of floquet-bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). [7] Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017). [6] Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of floquet-bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). [7] Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of floquet-bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). [7] Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  4. Jotzu, G. et al. Experimental realization of the topological haldane model with ultracold fermions. Nature 515, 237–240 (2014). [5] Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017). [6] Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of floquet-bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). [7] Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017). [6] Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of floquet-bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). [7] Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of floquet-bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). [7] Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  5. Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017). [6] Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of floquet-bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). [7] Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of floquet-bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). [7] Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  6. Observation of floquet-bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). [7] Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  7. Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nature Materials 2014 14:3 14, 290–294 (2014). URL https://www.nature.com/articles/nmat4156. [8] Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  8. Sie, E. J. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017). URL https://www.science.org/doi/10.1126/science.aal2241. [9] McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  9. McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nature Physics 16, 38–41 (2020). [10] Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  10. Aeschlimann, S. et al. Survival of floquet-bloch states in the presence of scattering. Nano Letters 21, 5028–5035 (2021). [11] Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  11. Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014). URL https://www.science.org/doi/10.1126/science.1258122. [12] Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  12. Shan, J.-Y. et al. Giant modulation of optical nonlinearity by floquet engineering. Nature 600, 235–239 (2021). [13] Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  13. Park, S. et al. Steady floquet-andreev states in graphene josephson junctions. Nature 603, 421–426 (2022). [14] Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  14. Zhou, S. et al. Pseudospin-selective floquet band engineering in black phosphorus. Nature 614, 75–80 (2023). [15] Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Oka, T. & Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  15. Photovoltaic hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009). [16] Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  16. Floquet topological insulator in semiconductor quantum wells. Nature Physics 7, 490–495 (2011). [17] Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Lindner, N. H., Bergman, D. L. & Refael, V., G. ad Galitski. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  17. Topological floquet spectrum in three dimensions via a two-photon resonance. Phys. Rev. B 87, 235131 (2013). [18] Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Wang, R., Wang, B., Shen, R., Sheng, L. & Xing, D. Y. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  18. Floquet weyl semimetal induced by off-resonant light. Europhysics Letters 105, 17004 (2014). [19] Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mentink, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  19. Ultrafast and reversible control of the exchange interaction in mott insulators. Nature Communications 6, 6708 (2015). [20] Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ebihara, S., Fukushima, K. & Oka, T. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  20. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B 93, 155107 (2016). [21] Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Chan, C.-K., Oh, Y.-T., Han, J. H. & Lee, P. A. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  21. Type-ii weyl cone transitions in driven semimetals. Phys. Rev. B 94, 121106 (2016). [22] Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  22. Creating stable floquet–weyl semimetals by laser-driving of 3d dirac materials. Nature Communications 8, 13940 (2017). [23] Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  23. Mahmood, F. et al. Selective scattering between floquet-bloch and volkov states in a topological insulator. Nat. Phys. 12, 306–311 (2016). [24] Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  24. Ito, S. et al. Build-up and dephasing of Floquet–Bloch bands on subcycle timescales. Nature 2023 616:7958 616, 696–701 (2023). URL https://www.nature.com/articles/s41586-023-05850-x. [25] Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  25. Zhang, X. et al. Light-induced electronic polarization in antiferromagnetic cr2o3. Nat. Mat. (2023). [26] Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  26. Sentef, M. A. et al. Theory of floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Comm. 6, 7047 (2015). [27] Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hübener, H., De Giovannini, U., & Rubio, A. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  27. Phonon driven floquet matter. Nano Lett. 18, 1535–1542 (2018). [28] Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  28. Schüler, M. et al. Local berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. Sci. Adv. 6, eaay2730 (2020). [29] Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  29. Schüler, M. et al. How circular dichroism in time-and angle-resolved photoemission can be used to spectroscopically detect transient topological states in graphene. Phys. Rev. X 10, 041013 (2020). [30] Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  30. Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B: At. Mol. Opt. Phys. 53, 225601 (2020). [31] Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  31. Park, S. T. Interference in floquet-volkov transitions. Phys. Rev. A 90, 013420 (2014). [32] Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  32. Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mat. 6, 770–775 (2007). [33] Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  33. Hwang, C. et al. Direct measurement of quantum phases in graphene via photoemission spectroscopy. Phys. Rev. B 84, 125422 (2011). [34] Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Syzranov, S. V., Fistul, M. V. & Efetov, K. B. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  34. Effect of radiation on transport in graphene. Phys. Rev. B 78, 045407 (2008). [35] López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  35. Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects. Phys. Rev. B 78, 201406 (2008). [36] López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). López-Rodríguez, F. J. & Naumis, G. G. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  36. Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure. Philosophical Magazine 90, 2977––2988 (2010). [37] Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Zhou, Y. & Wu, M. W. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  37. Optical response of graphene under intense terahertz fields. Phys. Rev. B 83, 245436 (2011). [38] Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Calvo, H. L., Pastawski, H. M., Roche, S. & Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  38. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett. 98, 232103 (2011). [39] Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Fregoso, B. M., Wang, Y. H., Gedik, N. & Galitski, V. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  39. Driven electronic states at the surface of a topological insulator. Phys. Rev. B 88, 155129 (2013). [40] Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  40. Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of au(111) at high momenta. Phys. Rev. B 102, 161403 (2020). [41] Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  41. Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mat. 8, 203–207 (2009). [42] Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019). Sie, E. J., Rohwer, T., Lee, C. & Gedik, N. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
  42. Time-resolved xuv arpes with tunable 24-33 ev laser pulses at 30 mev resolution. Nat. Comm. 10, 3535 (2019).
Citations (13)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com