Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantifying Scalar Field Dynamics with DESI 2024 Y1 BAO measurements (2404.14341v2)

Published 22 Apr 2024 in astro-ph.CO and hep-ph

Abstract: Quintessence scalar fields are a natural candidate for evolving dark energy. Unlike the phenomenological $w_0w_a$ parameterization of the dark energy equation of state, they cannot accommodate the phantom regime of dark energy $w(z) < -1$, or crossings into the phantom regime. Recent baryon acoustic oscillation (BAO) measurements by the Dark Energy Spectroscopic Instrument (DESI) indicate a preference for evolving dark energy over a cosmological constant, ranging from $2.6\sigma-3.9\sigma$ when fitting to $w_0w_a$, and combining the DESI BAO measurements with other cosmological probes. In this work, we directly fit three simple scalar field models to the DESI BAO data, combined with cosmic microwave background anisotropy measurements and supernova data sets. We find the best fit model to include a $2-4\%$ kinetic scalar field energy $\Omega_{\rm scf,k}$, for a canonical scalar field with a quadratic or linear potential. However, only the DESY-Y5 supernova data set combination shows a preference for quintessence over $\Lambda$CDM at the $95\%$ confidence level. Fitting to the supernova data sets Pantheon, Pantheon+, DES-Y5, and Union3, we show that the mild tension ($n_{\sigma}< 3.4 $) under $\Lambda$CDM emerges from a BAO preference for smaller values of fractional mass-energy density $\Omega_m < 0.29$, while all supernova data sets, except for Pantheon, prefer larger values, $\Omega_m > 0.3$. The tension under $\Lambda$CDM remains noticeable ($n_{\sigma} <2.8$), when replacing two of the DESI BAO redshift bins with effective redshifts $z_{\text{eff}} =0.51$, and $z_{\text{eff}}= 0.706$ with comparable BOSS DR 12 BAO measurements at $z_{\text{eff}} =0.51$, and $z_{\text{eff}}= 0.61$. Canonical scalar fields as dark energy are successful in mitigating that tension.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. A. G. Adame et al. DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations. 4 2024.
  2. Union Through UNITY: Cosmology with 2,000 SNe Using a Unified Bayesian Framework. arXiv e-prints, page arXiv:2311.12098, November 2023.
  3. T. M. C. Abbott et al. The Dark Energy Survey: Cosmology Results With ~1500 New High-redshift Type Ia Supernovae Using The Full 5-year Dataset. arXiv e-prints, page arXiv:2401.02929, January 2024.
  4. N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters. AAP, 641:A6, September 2020.
  5. Shadab Alam et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample. MNRAS, 470(3):2617–2652, September 2017.
  6. Shadab Alam et al. Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory. Phys. Rev. D, 103(8):083533, April 2021.
  7. A. G. Adame et al. DESI 2024 III: Baryon Acoustic Oscillations from Galaxies and Quasars. 4 2024.
  8. A. G. Adame et al. DESI 2024 IV: Baryon Acoustic Oscillations from the Lyman Alpha Forest. 4 2024.
  9. Andreas Albrecht et al. Report of the Dark Energy Task Force. 9 2006.
  10. Giuseppe D. Racca et al. The Euclid mission design. In Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, volume 9904 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, page 99040O, July 2016.
  11. Željko Ivezić et al. LSST: from Science Drivers to Reference Design and Anticipated Data Products. Astrophys. J., 873(2):111, 2019.
  12. Steven Weinberg. The Cosmological Constant Problem. Rev. Mod. Phys., 61:1–23, 1989.
  13. L. F. Abbott. A Mechanism for Reducing the Value of the Cosmological Constant. Phys. Lett. B, 150:427–430, 1985.
  14. T. Banks. Relaxation of the cosomological constant. Phys. Rev. Lett., 52:1461–1463, Apr 1984.
  15. Relaxing the Cosmological Constant: a Proof of Concept. JHEP, 12:022, 2016.
  16. Cosmic evolution in a cyclic universe. Phys. Rev. D, 65:126003, May 2002.
  17. Born again universe. Phys. Rev. D, 97(4):044003, 2018.
  18. Relaxation of the Cosmological Constant. Phys. Rev. D, 100(1):015048, 2019.
  19. Cumrun Vafa. The String landscape and the swampland. 9 2005.
  20. On the Geometry of the String Landscape and the Swampland. Nucl. Phys. B, 766:21–33, 2007.
  21. Distance and de Sitter Conjectures on the Swampland. Phys. Lett. B, 788:180–184, 2019.
  22. Trans-Planckian Censorship and the Swampland. JHEP, 09:123, 2020.
  23. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D, 37:3406–3427, Jun 1988.
  24. Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett., 82:896–899, 1999.
  25. Christof Wetterich. The Cosmon model for an asymptotically vanishing time dependent cosmological ’constant’. Astron. Astrophys., 301:321–328, 1995.
  26. Cosmic concordance and quintessence. Astrophys. J., 530:17–35, 2000.
  27. Reconstructing Quintessence. Phys. Rev. D, 103(10):103530, 2021.
  28. R. R. Caldwell. A Phantom menace? Phys. Lett. B, 545:23–29, 2002.
  29. Phantom energy: Dark energy with w<−1𝑤1w<-1italic_w < - 1 causes a cosmic doomsday. Phys. Rev. Lett., 91:071301, Aug 2003.
  30. Phantom energy and cosmic doomsday. Phys. Rev. Lett., 91:071301, 2003.
  31. Properties of singularities in (phantom) dark energy universe. Phys. Rev. D, 71:063004, 2005.
  32. Interpreting DESI’s evidence for evolving dark energy. 4 2024.
  33. Dark energy radiation. Phys. Rev. D, 104(8):083520, 2021.
  34. The Cosmology of Dark Energy Radiation. 11 2023.
  35. Quintessential interpretation of the evolving dark energy in light of DESI. 4 2024.
  36. Wen Yin. Cosmic Clues: DESI, Dark Energy, and the Cosmological Constant Problem. 4 2024.
  37. D. M. Scolnic et al. The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. Astrophys. J. , 859(2):101, June 2018.
  38. A New cosmological model of quintessence and dark matter. Phys. Rev. D, 62:103517, 2000.
  39. Quintessence arising from exponential potentials. Phys. Rev. D, 61:127301, May 2000.
  40. Cosmology with a primordial scaling field. Phys. Rev. D, 58:023503, Jun 1998.
  41. The Limits of quintessence. Phys. Rev. Lett., 95:141301, 2005.
  42. Arjun Berera. Warm inflation at arbitrary adiabaticity: A Model, an existence proof for inflationary dynamics in quantum field theory. Nucl. Phys. B, 585:666–714, 2000.
  43. Warm Little Inflaton. Phys. Rev. Lett., 117(15):151301, 2016.
  44. Minimal Warm Inflation. JCAP, 03:034, 2020. [Erratum: JCAP 10, E02 (2023)].
  45. Thermal Friction as a Solution to the Hubble Tension. Phys. Rev. D, 101(8):083537, 2020.
  46. The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes. jcap, 2011(7):034, July 2011.
  47. Efficient computation of cosmic microwave background anisotropies in closed friedmann-robertson-walker models. The Astrophysical Journal, 538(2):473–476, aug 2000.
  48. Cobaya: code for Bayesian analysis of hierarchical physical models. JCAP, 2021(5):057, May 2021.
  49. Cobaya: Bayesian analysis in cosmology. Astrophysics Source Code Library, record ascl:1910.019, October 2019.
  50. N. Aghanim et al. Planck 2018 results. I. Overview and the cosmological legacy of Planck. AAP, 641:A1, September 2020.
  51. N. Aghanim et al. Planck 2018 results. V. CMB power spectra and likelihoods. AAP, 641:A5, September 2020.
  52. Dillon Brout et al. The Pantheon+ Analysis: Cosmological Constraints. Astrophys. J. , 938(2):110, October 2022.
  53. Concordance and discordance in cosmology. Phys. Rev. D, 99(4):043506, February 2019.
  54. Non-Gaussian estimates of tensions in cosmological parameters. Phys. Rev. D, 104(4):043504, August 2021.
  55. Constraints on the sum of the neutrino masses in dynamical dark energy models with w⁢(z)≥−1𝑤𝑧1w(z)\geq-1italic_w ( italic_z ) ≥ - 1 are tighter than those obtained in ΛΛ\Lambdaroman_ΛCDM. Phys. Rev. D, 98(8):083501, 2018.
  56. Crossing the Phantom Divide with Parameterized Post-Friedmann Dark Energy. Phys. Rev. D, 78:087303, 2008.
  57. Dark energy with non-adiabatic sound speed: initial conditions and detectability. JCAP, 10:014, 2010.
Citations (18)

Summary

We haven't generated a summary for this paper yet.