Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Coherence and Distinguishability as Complementary Resources: A Resource-Theoretic Perspective from Wave-Particle Duality (2404.14323v4)

Published 22 Apr 2024 in quant-ph, cs.IT, and math.IT

Abstract: Wave-particle duality, a fundamental principle of quantum mechanics, encapsulates the complementary relationship between the wave and particle behaviors of quantum systems. In this paper, we treat quantum coherence and classical distinguishability as complementary resources and uncover a novel duality relation, which is explored through quantum state discrimination under incoherent operations, extending beyond typical interference scenarios. We prove that in an ensemble of mutually orthogonal pure states, the sum of `co-bits', quantifying the coherence preserved under incoherent free operations, and classical bits, representing the distinguishability extracted via quantum state discrimination, is bounded. This coherence-distinguishability duality relation exposes an inherent trade-off between the simultaneous preservation of a system's quantum coherence (wave-like property) and the extraction of its classical distinguishability (particle-like property). Our findings provide a fresh perspective on wave-particle duality through quantum resource theories, offering complementary insights into manipulating quantum and classical resources, with implications for quantum foundations and quantum technologies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. W. Heisenberg, Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik, Zeitschrift für Physik 43, 172 (1927).
  2. H. P. Robertson, The uncertainty principle, Phys. Rev. 34, 163 (1929).
  3. H. Maassen and J. B. Uffink, Generalized entropic uncertainty relations, Phys. Rev. Lett. 60, 1103 (1988).
  4. P. J. Coles, J. Kaniewski, and S. Wehner, Equivalence of wave–particle duality to entropic uncertainty, Nat. Commun. 5 (2014).
  5. P. J. Coles, Entropic framework for wave-particle duality in multipath interferometers, Phys. Rev. A 93 (2016).
  6. N. Bohr et al., The quantum postulate and the recent development of atomic theory, Vol. 3 (Printed in Great Britain by R. & R. Clarke, Limited, 1928).
  7. X. Wang and X. Yang, A molecular double-slit experiment, Science 374, 938 (2021).
  8. T. H. Yoon and M. Cho, Quantitative complementarity of wave-particle duality, Sci. Adv. 7, eabi9268 (2021).
  9. W. K. Wootters and W. H. Zurek, Complementarity in the double-slit experiment: Quantum nonseparability and a quantitative statement of bohr’s principle, Phys. Rev. D 19, 473 (1979).
  10. B.-G. Englert, Fringe visibility and which-way information: An inequality, Phys. Rev. Lett. 77, 2154 (1996).
  11. D. M. Greenberger and A. Yasin, Simultaneous wave and particle knowledge in a neutron interferometer, Phys. Rev. A 128, 391 (1988).
  12. G. Jaeger, A. Shimony, and L. Vaidman, Two interferometric complementarities, Phys. Rev. A 51, 54 (1995).
  13. S. Dürr, Quantitative wave-particle duality in multibeam interferometers, Phys. Rev. A 64, 042113 (2001).
  14. G. Bimonte and R. Musto, Comment on “quantitative wave-particle duality in multibeam interferometers”, Phys. Rev. A 67, 066101 (2003).
  15. T. Qureshi and M. A. Siddiqui, Wave–particle duality in n-path interference, Ann. Phys. 385, 598 (2017).
  16. K. K. Menon and T. Qureshi, Wave-particle duality in asymmetric beam interference, Phys. Rev. A 98 (2018).
  17. A. Winter and D. Yang, Operational resource theory of coherence, Phys. Rev. Lett. 116 (2016).
  18. J. Bae and L.-C. Kwek, Quantum state discrimination and its applications, J. Phys. A 48, 083001 (2015).
  19. T. Baumgratz, M. Cramer, and M. Plenio, Quantifying coherence, Phys. Rev. Lett. 113 (2014).
  20. R. Jozsa and J. Schlienz, Distinguishability of states and von Neumann entropy, Phys. Rev. A 62 (2000).
  21. J. Aberg, Quantifying superposition (2006), arXiv:quant-ph/0612146 [quant-ph] .
  22. E. Chitambar and G. Gour, Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence, Phys. Rev. Lett. 117, 030401 (2016).
  23. I. Marvian and R. W. Spekkens, How to quantify coherence: Distinguishing speakable and unspeakable notions, Phys. Rev. A 94 (2016).
  24. S. Bandyopadhyay, S. Halder, and M. Nathanson, Entanglement as a resource for local state discrimination in multipartite systems, Phys. Rev. A 94 (2016).
  25. S. Bandyopadhyay, More nonlocality with less purity, Phys. Rev. Lett. 106, 210402 (2011).
  26. E. Chitambar, R. Duan, and M.-H. Hsieh, When do local operations and classical communication suffice for two-qubit state discrimination?, IEEE Trans. Inf. Theory 60, 1549 (2013).
  27. E. Chitambar and M.-H. Hsieh, Revisiting the optimal detection of quantum information, Phys. Rev. A 88, 020302 (2013).
  28. M. Oszmaniec and T. Biswas, Operational relevance of resource theories of quantum measurements, Quantum 3, 133 (2019).
  29. R. Takagi and B. Regula, General resource theories in quantum mechanics and beyond: Operational characterization via discrimination tasks, Phys. Rev. X 9 (2019).
  30. A. F. Ducuara and P. Skrzypczyk, Operational interpretation of weight-based resource quantifiers in convex quantum resource theories, Phys. Rev. Lett. 125 (2020).
  31. N. Yu, R. Duan, and M. Ying, Distinguishability of quantum states by positive operator-valued measures with positive partial transpose, IEEE Trans. Inf. Theory 60, 2069–2079 (2014).
  32. S. Bandyopadhyay and V. Russo, Entanglement cost of discriminating noisy bell states by local operations and classical communication, Phys. Rev. A 104 (2021).
  33. E. Chitambar and M.-H. Hsieh, Relating the resource theories of entanglement and quantum coherence, Phys. Rev. Lett. 117 (2016).
  34. X. Wang, Semidefinite optimization for quantum information, PhD thesis  (2018).
  35. P. Skrzypczyk and D. Cavalcanti, Semidefinite Programming in Quantum Information Science, arXiv preprint arXiv:2306.11637  (2023).
  36. R. Konig, R. Renner, and C. Schaffner, The operational meaning of min- and max-entropy, IEEE Trans. Inf. Theory 55, 4337–4347 (2009).
  37. D. F. Walls, Squeezed states of light, Nature 306, 141 (1983).
  38. S. M. Cohen, Understanding entanglement as resource: Locally distinguishing unextendible product bases, Phys. Rev. A 77 (2008).
  39. A. Streltsov, G. Adesso, and M. B. Plenio, Colloquium: Quantum coherence as a resource, Rev. Mod. Phys. 89, 041003 (2017).
  40. B. Zhao, K. Ito, and K. Fujii, Probabilistic channel simulation using coherence, arXiv preprint arXiv:2404.06775  (2024).
  41. G. Gour, Resources of the quantum world, arXiv preprint arXiv:2402.05474  (2024).

Summary

We haven't generated a summary for this paper yet.