Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum-Enhanced Neural Exchange-Correlation Functionals (2404.14258v2)

Published 22 Apr 2024 in quant-ph, cond-mat.dis-nn, cond-mat.str-el, physics.chem-ph, and physics.comp-ph

Abstract: Kohn-Sham Density Functional Theory (KS-DFT) provides the exact ground state energy and electron density of a molecule, contingent on the as-yet-unknown universal exchange-correlation (XC) functional. Recent research has demonstrated that neural networks can efficiently learn to represent approximations to that functional, offering accurate generalizations to molecules not present during the training process. With the latest advancements in quantum-enhanced ML, evidence is growing that Quantum Neural Network (QNN) models may offer advantages in ML applications. In this work, we explore the use of QNNs for representing XC functionals, enhancing and comparing them to classical ML techniques. We present QNNs based on differentiable quantum circuits (DQCs) as quantum (hybrid) models for XC in KS-DFT, implemented across various architectures. We assess their performance on 1D and 3D systems. To that end, we expand existing differentiable KS-DFT frameworks and propose strategies for efficient training of such functionals, highlighting the importance of fractional orbital occupation for accurate results. Our best QNN-based XC functional yields energy profiles of the H$_2$ and planar H$_4$ molecules that deviate by no more than 1 mHa from the reference DMRG and FCI/6-31G results, respectively. Moreover, they reach chemical precision on a system, H$_2$H$_2$, not present in the training dataset, using only a few variational parameters. This work lays the foundation for the integration of quantum models in KS-DFT, thereby opening new avenues for expressing XC functionals in a differentiable way and facilitating computations of various properties.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, International Series of Monographs on Chemistry (Oxford University Press, 1994).
  2. W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley, 2015).
  3. E. Engel and R. M. Dreizler, Density Functional Theory: An Advanced Course, Theoretical and Mathematical Physics (Springer Berlin Heidelberg, 2011).
  4. A. D. Becke, J. Chem. Phys. 140, 18A301 (2014a).
  5. R. O. Jones, Rev. Mod. Phys. 87, 897.
  6. K. P. Kepp, Science 356, 496 (2017).
  7. A. D. Becke, J. Chem. Phys. 140 (2014b).
  8. N. Mardirossian and M. Head-Gordon, Molecular Physics 115, 2315 (2017).
  9. P. Verma and D. G. Truhlar, Trends Chem. 2, 302 (2020), special Issue - Laying Groundwork for the Future.
  10. S. Dick and M. Fernandez-Serra, Nat. Commun. 11 (2020).
  11. M. F. Kasim and S. M. Vinko, Phys. Rev. Lett. 127, 126403 (2021).
  12. X. Zhang and G. K.-L. Chan, J. Chem. Phys. 157, 204801 (2022).
  13. O. Kyriienko and V. E. Elfving, Phys. Rev. A 104, 052417 (2021).
  14. “A patent application for the method described in this manuscript has been submitted by PASQAL SAS.”  (2024).
  15. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
  16. S. Dasgupta and J. M. Herbert, J. Comput. Chem. 38, 869 (2017).
  17. J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne,  and Q. Zhang, “JAX: composable transformations of Python+NumPy programs,”  (2018).
  18. J.-D. Chai, J. Chem. Phys. 136, 154104 (2012).
  19. R. J. Bartlett and M. Musiał, Rev. Mod. Phys. 79, 291 (2007).
  20. D. P. Kingma and J. Ba, arXiv preprint arXiv:1412.6980  (2014).
  21. V. Lebedev, USSR Computational Mathematics and Mathematical Physics 15, 44 (1975).
  22. M. Schuld and F. Petruccione, Supervised learning with quantum computers, Vol. 17 (Springer, 2018).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com