Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tessellated Distributed Computing (2404.14203v1)

Published 22 Apr 2024 in cs.IT and math.IT

Abstract: The work considers the $N$-server distributed computing scenario with $K$ users requesting functions that are linearly-decomposable over an arbitrary basis of $L$ real (potentially non-linear) subfunctions. In our problem, the aim is for each user to receive their function outputs, allowing for reduced reconstruction error (distortion) $\epsilon$, reduced computing cost ($\gamma$; the fraction of subfunctions each server must compute), and reduced communication cost ($\delta$; the fraction of users each server must connect to). For any given set of $K$ requested functions -- which is here represented by a coefficient matrix $\mathbf {F} \in \mathbb{R}{K \times L}$ -- our problem is made equivalent to the open problem of sparse matrix factorization that seeks -- for a given parameter $T$, representing the number of shots for each server -- to minimize the reconstruction distortion $\frac{1}{KL}|\mathbf {F} - \mathbf{D}\mathbf{E}|2_{F}$ overall $\delta$-sparse and $\gamma$-sparse matrices $\mathbf{D}\in \mathbb{R}{K \times NT}$ and $\mathbf{E} \in \mathbb{R}{NT \times L}$. With these matrices respectively defining which servers compute each subfunction, and which users connect to each server, we here design our $\mathbf{D},\mathbf{E}$ by designing tessellated-based and SVD-based fixed support matrix factorization methods that first split $\mathbf{F}$ into properly sized and carefully positioned submatrices, which we then approximate and then decompose into properly designed submatrices of $\mathbf{D}$ and $\mathbf{E}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (92)
  1. J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.
  2. M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster computing with working sets,” in 2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 10), 2010.
  3. S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “A scalable framework for wireless distributed computing,” IEEE/ACM Transactions on Networking, vol. 25, no. 5, pp. 2643–2654, 2017.
  4. F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. Cadambe, “Trading redundancy for communication: Speeding up distributed SGD for non-convex optimization,” in International Conference on Machine Learning, pp. 2545–2554, PMLR, 2019.
  5. C.-S. Yang, R. Pedarsani, and A. S. Avestimehr, “Coded computing in unknown environment via online learning,” in 2020 IEEE International Symposium on Information Theory (ISIT), pp. 185–190, IEEE, 2020.
  6. N. Charalambides, H. Mahdavifar, and A. O. Hero III, “Numerically stable binary coded computations,” arXiv preprint arXiv:2109.10484, 2021.
  7. M. Soleymani, H. Mahdavifar, and A. S. Avestimehr, “Analog Lagrange coded computing,” IEEE Journal on Selected Areas in Information Theory, vol. 2, no. 1, pp. 283–295, 2021.
  8. F. Brunero, K. Wan, G. Caire, and P. Elia, “Coded distributed computing for sparse functions with structured support,” in 2023 IEEE Information Theory Workshop (ITW), pp. 474–479, 2023.
  9. E. Parrinello, E. Lampiris, and P. Elia, “Coded distributed computing with node cooperation substantially increases speedup factors,” in 2018 IEEE International Symposium on Information Theory (ISIT), pp. 1291–1295, 2018.
  10. M. R. Deylam Salehi and D. Malak, “An achievable low complexity encoding scheme for coloring cyclic graphs,” in 2023 59th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1–8, Sep. 2023.
  11. F. Brunero and P. Elia, “Multi-access distributed computing,” IEEE Transactions on Information Theory, vol. Early Access, pp. 1–1, 2024.
  12. T. Jahani-Nezhad, M. A. Maddah-Ali, S. Li, and G. Caire, “Swiftagg+: Achieving asymptotically optimal communication loads in secure aggregation for federated learning,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 4, pp. 977–989, 2023.
  13. M. Soleymani and H. Mahdavifar, “Distributed multi-user secret sharing,” IEEE Transactions on Information Theory, vol. 67, no. 1, pp. 164–178, 2020.
  14. A. Khalesi, M. Mirmohseni, and M. A. Maddah-Ali, “The capacity region of distributed multi-user secret sharing,” IEEE Journal on Selected Areas in Information Theory, vol. 2, no. 3, pp. 1057–1071, 2021.
  15. M. Soleymani, H. Mahdavifar, and A. S. Avestimehr, “Privacy-preserving distributed learning in the analog domain,” arXiv preprint arXiv:2007.08803, 2020.
  16. M. Soleymani, R. E. Ali, H. Mahdavifar, and A. S. Avestimehr, “List-decodable coded computing: Breaking the adversarial toleration barrier,” IEEE Journal on Selected Areas in Information Theory, vol. 2, no. 3, pp. 867–878, 2021.
  17. R. Bitar, M. Xhemrishi, and A. Wachter-Zeh, “Adaptive private distributed matrix multiplication,” IEEE Transactions on Information Theory, vol. 68, no. 4, pp. 2653–2673, 2022.
  18. C.-S. Yang and A. S. Avestimehr, “Coded computing for secure boolean computations,” IEEE Journal on Selected Areas in Information Theory, vol. 2, no. 1, pp. 326–337, 2021.
  19. Q. Yu and A. S. Avestimehr, “Coded computing for resilient, secure, and privacy-preserving distributed matrix multiplication,” IEEE Transactions on Communications, vol. 69, no. 1, pp. 59–72, 2020.
  20. H. Ehteram, M. A. Maddah-Ali, and M. Mirmohseni, “Trained-MPC: A private inference by training-based multiparty computation,” in MLSys 2023 Workshop on Resource-Constrained Learning in Wireless Networks, 2023.
  21. J. So, R. E. Ali, B. Güler, J. Jiao, and A. S. Avestimehr, “Securing secure aggregation: Mitigating multi-round privacy leakage in federated learning,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 9864–9873, 2023.
  22. N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient coding from cyclic MDS codes and expander graphs,” IEEE Transactions on Information Theory, vol. 66, no. 12, pp. 7475–7489, 2020.
  23. K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speeding up distributed machine learning using codes,” IEEE Transactions on Information Theory, vol. 64, no. 3, pp. 1514–1529, 2017.
  24. M. Egger, R. Bitar, A. Wachter-Zeh, and D. Gündüz, “Efficient distributed machine learning via combinatorial multi-armed bandits,” arXiv preprint arXiv:2202.08302, 2022.
  25. K. Wan, H. Sun, M. Ji, and G. Caire, “Distributed linearly separable computation,” IEEE Transactions on Information Theory, vol. 68, no. 2, pp. 1259–1278, 2022.
  26. Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in distributed matrix multiplication: Fundamental limits and optimal coding,” IEEE Transactions on Information Theory, vol. 66, no. 3, pp. 1920–1933, 2020.
  27. Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an optimal design for high-dimensional coded matrix multiplication,” Advances in Neural Information Processing Systems, vol. 30, 2017.
  28. Z. Jia and S. A. Jafar, “Cross subspace alignment codes for coded distributed batch computation,” IEEE Transactions on Information Theory, vol. 67, no. 5, pp. 2821–2846, 2021.
  29. J. S. Ng, W. Y. B. Lim, N. C. Luong, Z. Xiong, A. Asheralieva, D. Niyato, C. Leung, and C. Miao, “A comprehensive survey on coded distributed computing: Fundamentals, challenges, and networking applications,” IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp. 1800–1837, 2021.
  30. now Publishers Inc, 2020.
  31. E. Parrinello, A. Bazco-Nogueras, and P. Elia, “Fundamental limits of topology-aware shared-cache networks,” IEEE Transactions on Information Theory, vol. 70, no. 4, pp. 2538–2565, 2024.
  32. E. Lampiris and P. Elia, “Full coded caching gains for cache-less users,” IEEE Transactions on Information Theory, vol. 66, no. 12, pp. 7635–7651, 2020.
  33. J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and J. S. Rellermeyer, “A survey on distributed machine learning,” ACM Computing Surveys (CSUR), vol. 53, no. 2, pp. 1–33, 2020.
  34. S. Ulukus, S. Avestimehr, M. Gastpar, S. Jafar, R. Tandon, and C. Tian, “Private retrieval, computing and learning: Recent progress and future challenges,” IEEE Journal on Selected Areas in Communications, 2022.
  35. S. Wang, J. Liu, N. Shroff, and P. Yang, “Fundamental limits of coded linear transform,” arXiv preprint arXiv:1804.09791, 2018.
  36. S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental tradeoff between computation and communication in distributed computing,” IEEE Transactions on Information Theory, vol. 64, no. 1, pp. 109–128, 2017.
  37. K. Wan, H. Sun, M. Ji, D. Tuninetti, and G. Caire, “Cache-aided matrix multiplication retrieval,” IEEE Transactions on Information Theory, vol. 68, no. 7, pp. 4301–4319, 2022.
  38. S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover, “On the optimal recovery threshold of coded matrix multiplication,” IEEE Transactions on Information Theory, vol. 66, no. 1, pp. 278–301, 2019.
  39. A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Codedreduce: A fast and robust framework for gradient aggregation in distributed learning,” IEEE/ACM Transactions on Networking, 2021.
  40. N. Woolsey, R.-R. Chen, and M. Ji, “A new combinatorial coded design for heterogeneous distributed computing,” IEEE Transactions on Communications, vol. 69, no. 9, pp. 5672–5685, 2021.
  41. N. Woolsey, R.-R. Chen, and M. Ji, “Coded elastic computing on machines with heterogeneous storage and computation speed,” IEEE Transactions on Communications, vol. 69, no. 5, pp. 2894–2908, 2021.
  42. N. Woolsey, J. Kliewer, R.-R. Chen, and M. Ji, “A practical algorithm design and evaluation for heterogeneous elastic computing with stragglers,” in 2021 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, IEEE, 2021.
  43. M. Chen, D. Gündüz, K. Huang, W. Saad, M. Bennis, A. V. Feljan, and H. V. Poor, “Distributed learning in wireless networks: Recent progress and future challenges,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 12, pp. 3579–3605, 2021.
  44. J. Wang, Z. Jia, and S. A. Jafar, “Price of precision in coded distributed matrix multiplication: A dimensional analysis,” in 2021 IEEE Information Theory Workshop (ITW), pp. 1–6, IEEE, 2021.
  45. E. Ozfatura, S. Ulukus, and D. Gündüz, “Coded distributed computing with partial recovery,” IEEE Transactions on Information Theory, vol. 68, no. 3, pp. 1945–1959, 2022.
  46. D. Malak and M. Médard, “A distributed computationally aware quantizer design via hyper binning,” IEEE Transactions on Signal Processing, vol. 71, pp. 76–91, 2023.
  47. D. P. Woodruff et al., “Sketching as a tool for numerical linear algebra,” Foundations and Trends® in Theoretical Computer Science, vol. 10, no. 1–2, pp. 1–157, 2014.
  48. T. Jahani-Nezhad and M. A. Maddah-Ali, “Codedsketch: A coding scheme for distributed computation of approximated matrix multiplication,” IEEE Transactions on Information Theory, vol. 67, no. 6, pp. 4185–4196, 2021.
  49. W.-T. Chang and R. Tandon, “Random sampling for distributed coded matrix multiplication,” in ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8187–8191, 2019.
  50. N. Charalambides, M. Pilanci, and A. O. Hero, “Approximate weighted CR coded matrix multiplication,” in ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5095–5099, 2021.
  51. V. Gupta, S. Wang, T. Courtade, and K. Ramchandran, “Oversketch: Approximate matrix multiplication for the cloud,” in 2018 IEEE International Conference on Big Data (Big Data), pp. 298–304, 2018.
  52. N. S. Ferdinand and S. C. Draper, “Anytime coding for distributed computation,” in 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 954–960, 2016.
  53. J. Zhu, Y. Pu, V. Gupta, C. Tomlin, and K. Ramchandran, “A sequential approximation framework for coded distributed optimization,” in 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1240–1247, 2017.
  54. T. Jahani-Nezhad and M. A. Maddah-Ali, “Berrut approximated coded computing: Straggler resistance beyond polynomial computing,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 1, pp. 111–122, 2023.
  55. H. Jeong, A. Devulapalli, V. R. Cadambe, and F. P. Calmon, “ϵitalic-ϵ\epsilonitalic_ϵ-approximate coded matrix multiplication is nearly twice as efficient as exact multiplication,” IEEE Journal on Selected Areas in Information Theory, vol. 2, no. 3, pp. 845–854, 2021.
  56. S. Kiani and S. C. Draper, “Successive approximation coding for distributed matrix multiplication,” IEEE Journal on Selected Areas in Information Theory, vol. 3, no. 2, pp. 286–305, 2022.
  57. R. Ji, A. Heidarzadeh, and K. R. Narayanan, “Sparse random Khatri-Rao product codes for distributed matrix multiplication,” in 2022 IEEE Information Theory Workshop (ITW), pp. 416–421, 2022.
  58. M. Rudow, N. Charalambides, A. O. Hero, and K. Rashmi, “Compression-informed coded computing,” in 2023 IEEE International Symposium on Information Theory (ISIT), pp. 2177–2182, 2023.
  59. N. Agrawal, Y. Qiu, M. Frey, I. Bjelakovic, S. Maghsudi, S. Stanczak, and J. Zhu, “A learning-based approach to approximate coded computation,” in 2022 IEEE Information Theory Workshop (ITW), pp. 600–605, 2022.
  60. T. Jahani-Nezhad and M. A. Maddah-Ali, “Optimal communication-computation trade-off in heterogeneous gradient coding,” IEEE Journal on Selected Areas in Information Theory, vol. 2, no. 3, pp. 1002–1011, 2021.
  61. T. Jahani-Nezhad and M. A. Maddah-Ali, “Codedsketch: Coded distributed computation of approximated matrix multiplication,” in 2019 IEEE International Symposium on Information Theory (ISIT), pp. 2489–2493, 2019.
  62. R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient coding: Avoiding stragglers in distributed learning,” in International Conference on Machine Learning, pp. 3368–3376, PMLR, 2017.
  63. M. Ye and E. Abbe, “Communication-computation efficient gradient coding,” in International Conference on Machine Learning, pp. 5610–5619, PMLR, 2018.
  64. W. Halbawi, N. Azizan, F. Salehi, and B. Hassibi, “Improving distributed gradient descent using Reed-Solomon codes,” in 2018 IEEE International Symposium on Information Theory (ISIT), pp. 2027–2031, IEEE, 2018.
  65. S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear transforms distributedly using coded short dot products,” Advances In Neural Information Processing Systems, vol. 29, 2016.
  66. A. Ramamoorthy, L. Tang, and P. O. Vontobel, “Universally decodable matrices for distributed matrix-vector multiplication,” in 2019 IEEE International Symposium on Information Theory (ISIT), pp. 1777–1781, 2019.
  67. A. B. Das and A. Ramamoorthy, “Distributed matrix-vector multiplication: A convolutional coding approach,” in 2019 IEEE International Symposium on Information Theory (ISIT), pp. 3022–3026, IEEE, 2019.
  68. F. Haddadpour and V. R. Cadambe, “Codes for distributed finite alphabet matrix-vector multiplication,” in 2018 IEEE International Symposium on Information Theory (ISIT), pp. 1625–1629, IEEE, 2018.
  69. S. Wang, J. Liu, and N. Shroff, “Coded sparse matrix multiplication,” in International Conference on Machine Learning, pp. 5152–5160, PMLR, 2018.
  70. A. Ramamoorthy, A. B. Das, and L. Tang, “Straggler-resistant distributed matrix computation via coding theory: Removing a bottleneck in large-scale data processing,” IEEE Signal Processing Magazine, vol. 37, no. 3, pp. 136–145, 2020.
  71. M. Zinkevich, M. Weimer, L. Li, and A. Smola, “Parallelized stochastic gradient descent,” in Advances in Neural Information Processing Systems, vol. 23, 2010.
  72. T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project Adam: Building an efficient and scalable deep learning training system,” in 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), pp. 571–582, 2014.
  73. K. Wan, H. Sun, M. Ji, and G. Caire, “On the tradeoff between computation and communication costs for distributed linearly separable computation,” IEEE Transactions on Communications, vol. 69, no. 11, pp. 7390–7405, 2021.
  74. K. Wan, H. Sun, M. Ji, and G. Caire, “On secure distributed linearly separable computation,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 3, pp. 912–926, 2022.
  75. A. Khalesi and P. Elia, “Multi-user linearly-separable distributed computing,” IEEE Transactions on Information Theory, vol. 69, no. 10, pp. 6314–6339, 2023.
  76. O. Makkonen and C. Hollanti, “Analog secure distributed matrix multiplication over complex numbers,” in 2022 IEEE International Symposium on Information Theory (ISIT), pp. 1211–1216, IEEE, 2022.
  77. A. Khalesi and P. Elia, “Multi-user linearly separable computation: A coding theoretic approach,” in 2022 IEEE Information Theory Workshop (ITW), pp. 428–433, 2022.
  78. A. Khalesi, S. Daei, M. Kountouris, and P. Elia, “Multi-user distributed computing via compressed sensing,” in 2023 IEEE Information Theory Workshop (ITW), pp. 509–514, 2023.
  79. R. Gribonval and K. Schnass, “Dictionary identification—sparse matrix-factorization via l-1 -minimization,” IEEE Transactions on Information Theory, vol. 56, no. 7, pp. 3523–3539, 2010.
  80. L. Zheng, E. Riccietti, and R. Gribonval, “Identifiability in two-layer sparse matrix factorization,” arXiv preprint arXiv:2110.01235, 2021.
  81. L. Zheng, E. Riccietti, and R. Gribonval, “Efficient identification of butterfly sparse matrix factorizations,” SIAM Journal on Mathematics of Data Science, vol. 5, no. 1, pp. 22–49, 2023.
  82. Q.-T. Le, E. Riccietti, and R. Gribonval, “Spurious valleys, np-hardness, and tractability of sparse matrix factorization with fixed support,” SIAM Journal on Matrix Analysis and Applications, vol. 44, no. 2, pp. 503–529, 2023.
  83. C. Eckart and G. Young, “The approximation of one matrix by another of lower rank,” Psychometrika, vol. 1, no. 3, pp. 211–218, 1936.
  84. C. F. Van Loan and G. Golub, “Matrix computations (Johns Hopkins studies in mathematical sciences),” Matrix Computations, vol. 5, 1996.
  85. T. Dao, A. Gu, M. Eichhorn, A. Rudra, and C. Ré, “Learning fast algorithms for linear transforms using butterfly factorizations,” in International conference on machine learning, pp. 1517–1527, PMLR, 2019.
  86. W. Hackbusch, “A sparse matrix arithmetic based on-matrices. Part I: Introduction to-matrices,” Computing, vol. 62, no. 2, pp. 89–108, 1999.
  87. C. R. Johnson, “Matrix completion problems: a survey,” in Matrix Theory and Applications, vol. 40, pp. 171–198, 1990.
  88. F. Ardila and R. P. Stanley, “Tilings,” The Mathematical Intelligencer, vol. 32, no. 4, pp. 32–43, 2010.
  89. American Mathematical Soc., 2012.
  90. American Mathematical Society, 2022.
  91. N. Kishore Kumar and J. Schneider, “Literature survey on low rank approximation of matrices,” Linear and Multilinear Algebra, vol. 65, no. 11, pp. 2212–2244, 2017.
  92. V. A. Marchenko and L. A. Pastur, “Distribution of eigenvalues for some sets of random matrices,” Matematicheskii Sbornik, vol. 114, no. 4, pp. 507–536, 1967.
Citations (1)

Summary

We haven't generated a summary for this paper yet.