Brane mechanics and gapped Lie n-algebroids (2404.14126v1)
Abstract: We draw a parallel between the BV/BRST formalism for higher-dimensional ($\ge 2$) Hamiltonian mechanics and higher notions of torsion and basic curvature tensors for generalized connections in specific Lie $n$-algebroids based on homotopy Poisson structures. The gauge systems we consider include Poisson sigma models in any dimension and ``generalised R-flux'' deformations thereof, such as models with an $(n+2)$-form-twisted R-Poisson target space. Their BV/BRST action includes interaction terms among the fields, ghosts and antifields whose coefficients acquire a geometric meaning by considering twisted Koszul multibrackets that endow the target space with a structure that we call a gapped almost Lie $n$-algebroid. Studying covariant derivatives along $n$-forms, we define suitable polytorsion and basic polycurvature tensors and identify them with the interaction coefficients in the gauge theory, thus relating models for topological $n$-branes to differential geometry on Lie $n$-algebroids.
- M. Henneaux and C. Teitelboim, “Quantization of Gauge Systems,” Princeton University Press, 1994
- G. Barnich, F. Brandt and M. Henneaux, “Local BRST cohomology in gauge theories,” Phys. Rep. 338 (2000), 439–569 [arXiv:hep-th/0002245 [hep-th]].
- B. Zwiebach, “Closed string field theory: Quantum action and the B-V master equation,” Nucl. Phys. B 390 (1993), 33–152 [arXiv:hep-th/9206084 [hep-th]].
- T. Lada and J. Stasheff, “Introduction to SH Lie algebras for physicists,” Int. J. Theor. Phys. 32 (1993), 1087–1104 [arXiv:hep-th/9209099 [hep-th]].
- O. Hohm and B. Zwiebach, “L∞subscript𝐿L_{\infty}italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT Algebras and Field Theory,” Fortsch. Phys. 65 (2017) no.3-4, 1700014 [arXiv:1701.08824 [hep-th]].
- N. Hitchin, “Generalized Calabi-Yau manifolds,” Quart. J. Math. 54 (2003), 281-308 [arXiv:math/0209099 [math.DG]].
- M. Gualtieri, “Generalized complex geometry,” Ann. Math. 174:1 (2011), 75–123 [arXiv:math/0401221 [math.DG]].
- M. Gualtieri, “Branes on Poisson varieties,” in Oscar Garcia-Prada, Jean Pierre Bourguignon, and Simon Salamon (eds), The Many Facets of Geometry: A Tribute to Nigel Hitchin (Oxford, 2010), doi:10.1093/acprof:oso/9780199534920.003.0018 [arXiv:0710.2719 [math.DG]].
- A. Coimbra, C. Strickland-Constable and D. Waldram, “Supergravity as Generalised Geometry I: Type II Theories,” JHEP 11 (2011), 091 [arXiv:1107.1733 [hep-th]].
- O. Hohm, C. Hull and B. Zwiebach, “Generalized metric formulation of double field theory,” JHEP 08 (2010), 008 [arXiv:1006.4823 [hep-th]].
- O. Hohm and B. Zwiebach, “Towards an invariant geometry of double field theory,” J. Math. Phys. 54 (2013), 032303 [arXiv:1212.1736 [hep-th]].
- B. Jurčo and J. Vysoký, “Courant Algebroid Connections and String Effective Actions,” Noncommutative Geometry and Physics 4 (2017) 211–265 [arXiv:1612.01540 [math-ph]].
- P. Ševera and F. Valach, “Courant Algebroids, Poisson–Lie T-Duality, and Type II Supergravities,” Commun. Math. Phys. 375 (2020) no.1, 307–344 [arXiv:1810.07763 [math.DG]].
- E. Boffo and P. Schupp, “Deformed graded Poisson structures, Generalized Geometry and Supergravity,” JHEP 01 (2020), 007 [arXiv:1903.09112 [hep-th]].
- P. Aschieri, F. Bonechi and A. Deser, “On Curvature and Torsion in Courant Algebroids,” Annales Henri Poincaré 22 (2021) no.7, 2475–2496 [arXiv:1910.11273 [math.DG]].
- B. Jurčo, F. Moučka and J. Vysoký, “Palatini variation in generalized geometry and string effective actions,” J. Geom. Phys. 191 (2023), 104909 [arXiv:2211.09138 [hep-th]].
- A. Chatzistavrakidis, “Topological field theories induced by twisted R-Poisson structure in any dimension,” JHEP 09 (2021), 045 [arXiv:2106.01067 [hep-th]].
- N. Ikeda, “Higher Dimensional Lie Algebroid Sigma Model with WZ Term,” Universe 7 (2021) no.10, 391 [arXiv:2109.02858 [hep-th]].
- P. Ševera, “Some title containing the words "homotopy" and "symplectic", e.g. this one,” arXiv:math/0105080 [math.SG]
- N. Halmagyi, “Non-geometric String Backgrounds and Worldsheet Algebras,” JHEP 07 (2008), 137 [arXiv:0805.4571 [hep-th]].
- D. Mylonas, P. Schupp and R. J. Szabo, “Membrane Sigma-Models and Quantization of Non-Geometric Flux Backgrounds,” JHEP 09 (2012), 012 [arXiv:1207.0926 [hep-th]].
- A. Chatzistavrakidis, L. Jonke and O. Lechtenfeld, “Sigma models for genuinely non-geometric backgrounds,” JHEP 11 (2015), 182 [arXiv:1505.05457 [hep-th]].
- T. Bessho, M. A. Heller, N. Ikeda and S. Watamura, “Topological Membranes, Current Algebras and H-flux - R-flux Duality based on Courant Algebroids,” JHEP 04 (2016), 170 [arXiv:1511.03425 [hep-th]].
- C. Klimčík and T. Strobl, “WZW - Poisson manifolds,” J. Geom. Phys. 43 (2002), 341–344 [arXiv:math/0104189 [math.SG]].
- P. Ševera and A. Weinstein, “Poisson geometry with a 3 form background,” Prog. Theor. Phys. Suppl. 144 (2001), 145–154 [arXiv:math/0107133 [math.SG]].
- M. Hansen and T. Strobl, “First Class Constrained Systems and Twisting of Courant Algebroids by a Closed 4-form,” Fundamental Interactions (2009) 115–144 [arXiv:0904.0711 [hep-th]].
- I. Vaisman, “Transitive Courant algebroids,” Int. J. Math. Math. Sci. 2005 (2005), 1737–1758 [arXiv:math/0407399 [math.DG]].
- M. Alexandrov, A. Schwarz, O. Zaboronsky and M. Kontsevich, “The Geometry of the master equation and topological quantum field theory,” Int. J. Mod. Phys. A 12 (1997), 1405–1429 [arXiv:hep-th/9502010].
- A. S. Cattaneo and G. Felder, “A Path integral approach to the Kontsevich quantization formula,” Commun. Math. Phys. 212 (2000), 591–611 [arXiv:math/9902090].
- A. S. Cattaneo and G. Felder, “On the AKSZ formulation of the Poisson sigma model,” Lett. Math. Phys. 56 (2001), 163–179 [arXiv:math/0102108 [math]].
- N. Ikeda and X. Xu, “Canonical functions, differential graded symplectic pairs in supergeometry, and Alexandrov-Kontsevich-Schwartz-Zaboronsky sigma models with boundaries,” J. Math. Phys. 55 (2014), 113505 [arXiv:1301.4805 [math.SG]].
- N. Ikeda and T. Strobl, “BV and BFV for the H-twisted Poisson sigma model,” Annales Henri Poincare 22 (2021) no.4, 1267–1316 [arXiv:1912.13511 [hep-th]].
- A. Chatzistavrakidis and L. Jonke, “Basic curvature and the Atiyah cocycle in gauge theory,” [arXiv:2302.04956 [hep-th]].
- E. Witten, “Topological Sigma Models,” Commun. Math. Phys. 118 (1988), 411
- F. Bonechi, A. S. Cattaneo and R. Iraso, “Comparing Poisson Sigma Model with A-model,” JHEP 10 (2016), 133 [arXiv:1607.03411 [hep-th]].
- L. Baulieu, A. S. Losev and N. A. Nekrasov, “Target space symmetries in topological theories. 1.,” JHEP 02 (2002), 021 [arXiv:hep-th/0106042 [hep-th]].
- A. S. Cattaneo, G. Felder and L. Tomassini, “From local to global deformation quantization of poisson manifolds,” [arXiv:math/0012228 [math.QA]].
- M. Bojowald, A. Kotov and T. Strobl, “Lie algebroid morphisms, Poisson sigma models, and off-shell closed gauge symmetries,” J. Geom. Phys. 54 (2005), 400–426 [arXiv:math/0406445 [math.DG]].
- A. Chatzistavrakidis, N. Ikeda and L. Jonke, “Geometric BV for twisted Courant sigma models and the BRST power finesse,” [arXiv:2401.00425 [hep-th]].
- Th. Voronov, “L-infinity bialgebroids and homotopy Poisson structures on supermanifolds,” arXiv:1909.04914 [math.DG]
- C.A. Abad and M. Crainic, “Representations up to homotopy of Lie algebroids,” J. Reine Angew. Math. 663 (2012), 91–126
- N. Ikeda, “Two-dimensional gravity and nonlinear gauge theory,” Annals Phys. 235 (1994), 435–464 [arXiv:hep-th/9312059.
- A. Yu. Vaintrob, “Lie algebroids and homological vector fields,” Russ. Math. Surv. 52, 428 (1997)
- D. Roytenberg, “On the structure of graded symplectic supermanifolds and Courant algebroids,” Quantization, Poisson Brackets and Beyond, Theodore Voronov (ed.), Contemp. Math. 315, Amer. Math. Soc., Providence, RI, 2002, [arXiv:math/0203110 [math.SG]].
- Z. Liu, A. Weinstein and P. Xu, “Manin Triples for Lie Bialgebroids,” J. Diff. Geom. 45 (1997) no.3, 547–574 [arXiv:dg-ga/9508013 [math.DG]].
- C. Arias, N. Boulanger, P. Sundell and A. Torres-Gomez, “2D sigma models and differential Poisson algebras,” JHEP 08 (2015), 095 [arXiv:1503.05625 [hep-th]].
- C. Arias, P. Sundell and A. Torres-Gomez, “Differential Poisson Sigma Models with Extended Supersymmetry,” [arXiv:1607.00727 [hep-th]].
- E. Witten, “Nonabelian Bosonization in Two-Dimensions,” Commun. Math. Phys. 92 (1984), 455–472
- M. Grützmann and T. Strobl, “General Yang–Mills type gauge theories for p𝑝pitalic_p-form gauge fields: From physics-based ideas to a mathematical framework or From Bianchi identities to twisted Courant algebroids,” Int. J. Geom. Meth. Mod. Phys. 12 (2014), 1550009 [arXiv:1407.6759 [hep-th]].
- A. Chatzistavrakidis, N. Ikeda and G. Šimunić, “The BV action of 3D twisted R-Poisson sigma models,” JHEP 10 (2022), 002 [arXiv:2206.03683 [hep-th]].
- D. Roytenberg, “Courant algebroids, derived brackets and even symplectic supermanifolds,” PhD Thesis, arXiv:math/9910078
- I. Vaisman, “Lectures on the Geometry of Poisson Manifolds,” Progress in Mathematics, vol. 118, Birkhäuser, Basel and Boston, 1994, doi:10.1007/978-3-0348-8495-2
- Th. Voronov, “Higher derived brackets and homotopy algebras,” Journal of Pure and Applied Algebra 202, Issues 1-3 (2005) 133–153
- A. S. Cattaneo and G. Felder, “Relative formality theorem and quantisation of coisotropic submanifolds,” [arXiv:math/0501540 [math.QA]].
- R. Ibáñez, M. de León, J. C. Marrero, D. M. de Diego, “Dynamics of generalized Poisson and Nambu–Poisson brackets,” J. Math. Phys. 38, 2332–2344 (1997)
- B. Jurčo, P. Schupp and J. Vysoký, “p-Brane Actions and Higher Roytenberg Brackets,” JHEP 02 (2013), 042 [arXiv:1211.0814 [hep-th]].
- K. C. H. Mackenzie, P. Xu, “Lie bialgebroids and Poisson groupoids,” Duke Math. J. 73(2): 415–452 (1994).
- K. C. H. Mackenzie, “General Theory of Lie Groupoids and Lie Algebroids,” Cambridge University Press 2005.
- N. Ikeda, “Compatible E-differential forms on Lie algebroids over (pre-)multisymplectic manifolds,” SIGMA 20 (2024), 025, 19 pp. [arXiv:2302.08193 [math.DG]].
- Y. Sheng, C. Zhu, “Higher Extensions of Lie Algebroids,” Commun. Contemp. Math. 19, 1650034 (2017) [arXiv:1103.5920 [math-ph]]
- G. Bonavolontá, N. Poncin, “On the category of Lie n-algebroids,” J. Geom. Physics 73 (2013) 70–90
- C. Laurent-Gengoux, S. Lavau and T. Strobl, “The Universal Lie ∞\infty∞-Algebroid of a Singular Foliation,” Documenta Mathematica 25 (2020) 1571–1652
- H.-C. Herbig, D. Herden, C. Seaton, “Higher Koszul brackets on the cotangent complex,” Intern. Math. Res. Notices 2023, Issue 13 (2023) 11592–11644 [arXiv:2107.04204]
- Y. Kosmann-Schwarzbach, F. Magri, “Poisson-Nijenhuis structures,” Annales de l’I.H.P. Physique théorique 53 (1990) no. 1, 35–81
- W. M. Tulczyjew, “The Legendre transformation,” Annales de l’institut Henri Poincaré. Section A, Physique Théorique 27 (1977) no. 1, 101–114.
- H. Yoshimura, J. E. Marsden, “Dirac structures in Lagrangian mechanics Part I: Implicit Lagrangian systems,” J. Geom. Phys. 57:1 (2006) 133–156
- A. J. Bruce and J. Grabowski, “Pre-Courant algebroids,” J. Geom. Phys. 142 (2019) 254–273
- M. Jotz Lean, R. A. Mehta, T. Papantonis, “Modules and representations up to homotopy of Lie n𝑛nitalic_n-algebroids,” J. Homotopy Relat. Struct. 18 (2023) 23–-70 [arXiv:2001.01101]
- M. Crainic and R. L. Fernandes, “Secondary Characteristic Classes of Lie Algebroids,” In: Carow-Watamura, U., Maeda, Y., Watamura, S. (eds) Quantum Field Theory and Noncommutative Geometry. Lecture Notes in Physics 662. Springer, Berlin, Heidelberg. doi:19.1007/113427869
- A. Kotov and T. Strobl, “Lie algebroids, gauge theories, and compatible geometrical structures,” Rev. Math. Phys. 31 (2018) no.04, 1950015 [arXiv:1603.04490 [math.DG]].
- R. Caseiro, C. Laurent-Gengoux, “Modular class of Lie-∞\infty∞-algebroids and adjoint representations,” J. Geom. Mech. 14(2), 273–305 (2022)