Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unconstrained Lagrangian Formulation for Bosonic Continuous Spin Theory in Flat Spacetime of Arbitrary Dimension (2404.14118v6)

Published 22 Apr 2024 in hep-th

Abstract: We have discovered two unconstrained forms of free Lagrangian for continuous spin(CS) theory in arbitrary flat spacetime dimension for bosonic case. These Lagrangians, unlike that by Schuster and Toro, do not include delta functions and are conventional. The first form consists of five kinds of totally symmetric helicity fields and one kind of gauge parameter. By introducing auxiliary creation and annihilation operators, each is combined into a state vector in Fock space, including all ranks one by one. The Lagrangian imposes no constraints, such as trace conditions, on these fields or the gauge parameter field. Additionally, the Lagrangian does not contain higher-order derivative terms. In the limit as CS parameter $\mu$ approaches zero, it naturally reproduces a Lagrangian for helicity fields in higher spin(HS) theory, known as unconstrained quartet formulation. Permitting third-order derivatives, we also obtain the second unconstrained form of Lagrangian that can be written in terms of three kinds of fields, including $\mu$, similar to the formulation by Francia and Sagnotti. Partial gauge fixing and partial use of equations of motion(EOM) on this Lagrangian yield a Fronsdal-like Lagrangian with a single double-traceless field, including $\mu$. By imposing further gauge fixing on the field in the EOM with respect to divergence and trace, we confirm the reproduction of the modified Wigner equations already known in literature.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (65)
  1. Eugene P. Wigner “On Unitary Representations of the Inhomogeneous Lorentz Group” In Annals Math. 40, 1939, pp. 149–204 DOI: 10.2307/1968551
  2. V. Bargmann and Eugene P. Wigner “Group Theoretical Discussion of Relativistic Wave Equations” In Proc. Nat. Acad. Sci. 34, 1948, pp. 211 DOI: 10.1073/pnas.34.5.211
  3. “The unitary representations of the Poincar\’e group in any spacetime dimension” In SciPost Phys. Lect. Notes 30, 2021, pp. 1 DOI: 10.21468/SciPostPhysLectNotes.30
  4. “Quantum fields and interactions of massless particles - the continuous spin case” In Annals Phys. 64, 1971, pp. 211–253 DOI: 10.1016/0003-4916(71)90284-3
  5. “Continuous spin representations of the Poincare and superPoincare groups” In J. Math. Phys. 43, 2002, pp. 6279 DOI: 10.1063/1.1518138
  6. Christian Fronsdal “Massless Fields with Integer Spin” In Phys. Rev. D 18, 1978, pp. 3624 DOI: 10.1103/PhysRevD.18.3624
  7. “Massless Fields with Half Integral Spin” In Phys. Rev. D 18, 1978, pp. 3630 DOI: 10.1103/PhysRevD.18.3630
  8. Christian Fronsdal “Singletons and Massless, Integral Spin Fields on de Sitter Space (Elementary Particles in a Curved Space. 7.” In Phys. Rev. D 20, 1979, pp. 848–856 DOI: 10.1103/PhysRevD.20.848
  9. “Massless, Half Integer Spin Fields in De Sitter Space” In Phys. Rev. D 22, 1980, pp. 1361 DOI: 10.1103/PhysRevD.22.1361
  10. N. Bouatta, G. Compere and A. Sagnotti “An Introduction to free higher-spin fields” In 1st Solvay Workshop on Higher Spin Gauge Theories, 2004, pp. 79–99 arXiv:hep-th/0409068
  11. “Nonlinear higher spin theories in various dimensions” In 1st Solvay Workshop on Higher Spin Gauge Theories, 2004, pp. 132–197 arXiv:hep-th/0503128
  12. “Elements of Vasiliev theory”, 2014 arXiv:1401.2975 [hep-th]
  13. “Continuous-spin particle field theory with helicity correspondence” In Phys. Rev. D 91, 2015, pp. 025023 DOI: 10.1103/PhysRevD.91.025023
  14. Victor O. Rivelles “Gauge Theory Formulations for Continuous and Higher Spin Fields” In Phys. Rev. D 91.12, 2015, pp. 125035 DOI: 10.1103/PhysRevD.91.125035
  15. R.R. Metsaev “Continuous spin gauge field in (A)dS space” In Phys. Lett. B 767, 2017, pp. 458–464 DOI: 10.1016/j.physletb.2017.02.027
  16. R.R. Metsaev “BRST-BV approach to continuous-spin field” In Phys. Lett. B 781, 2018, pp. 568–573 DOI: 10.1016/j.physletb.2018.04.038
  17. Xavier Bekaert and Evgeny D. Skvortsov “Elementary particles with continuous spin” In Int. J. Mod. Phys. A 32.23n24, 2017, pp. 1730019 DOI: 10.1142/S0217751X17300198
  18. Yu.M. Zinoviev “Infinite spin fields in d = 3 and beyond” In Universe 3.3, 2017, pp. 63 DOI: 10.3390/universe3030063
  19. “Infinite (continuous) spin fields in the frame-like formalism” In Nucl. Phys. B 928, 2018, pp. 182–216 DOI: 10.1016/j.nuclphysb.2018.01.016
  20. X. Bekaert, M. Najafizadeh and M.R. Setare “A gauge field theory of fermionic Continuous-Spin Particles” In Phys. Lett. B 760, 2016, pp. 320–323 DOI: 10.1016/j.physletb.2016.07.005
  21. R.R. Metsaev “Fermionic continuous spin gauge field in (A)dS space” In Phys. Lett. B 773, 2017, pp. 135–141 DOI: 10.1016/j.physletb.2017.08.020
  22. R.R. Metsaev “Continuous-spin mixed-symmetry fields in AdS(5)” In J. Phys. A 51.21, 2018, pp. 215401 DOI: 10.1088/1751-8121/aabcda
  23. Mojtaba Najafizadeh “Modified Wigner equations and continuous spin gauge field” In Phys. Rev. D 97.6, 2018, pp. 065009 DOI: 10.1103/PhysRevD.97.065009
  24. Konstantin B. Alkalaev and Maxim A. Grigoriev “Continuous spin fields of mixed-symmetry type” In JHEP 03, 2018, pp. 030 DOI: 10.1007/JHEP03(2018)030
  25. Konstantin Alkalaev, Alexander Chekmenev and Maxim Grigoriev “Unified formulation for helicity and continuous spin fermionic fields” In JHEP 11, 2018, pp. 050 DOI: 10.1007/JHEP11(2018)050
  26. Č. Burdík, V.K. Pandey and A. Reshetnyak “BRST–BFV and BRST–BV descriptions for bosonic fields with continuous spin on R1,d−1superscript𝑅1𝑑1R^{1,d-1}italic_R start_POSTSUPERSCRIPT 1 , italic_d - 1 end_POSTSUPERSCRIPT” In Int. J. Mod. Phys. A 35.26, 2020, pp. 2050154 DOI: 10.1142/S0217751X20501547
  27. Arkady Yu. Segal “A Generating formulation for free higher spin massless fields”, 2001 arXiv:hep-th/0103028
  28. Mojtaba Najafizadeh “Local action for fermionic unconstrained higher spin gauge fields in AdS and dS spacetimes” In Phys. Rev. D 98.12, 2018, pp. 125012 DOI: 10.1103/PhysRevD.98.125012
  29. “Free geometric equations for higher spins” In Phys. Lett. B 543, 2002, pp. 303–310 DOI: 10.1016/S0370-2693(02)02449-8
  30. “On the geometry of higher spin gauge fields” In Class. Quant. Grav. 20, 2003, pp. S473–S486 DOI: 10.1088/0264-9381/20/12/313
  31. “Minimal local Lagrangians for higher-spin geometry” In Phys. Lett. B 624, 2005, pp. 93–104 DOI: 10.1016/j.physletb.2005.08.002
  32. I.L. Buchbinder, A.V. Galajinsky and V.A. Krykhtin “Quartet unconstrained formulation for massless higher spin fields” In Nucl. Phys. B 779, 2007, pp. 155–177 DOI: 10.1016/j.nuclphysb.2007.03.032
  33. “Quartet unconstrained formulation for massive higher spin fields” In JHEP 11, 2008, pp. 081 DOI: 10.1088/1126-6708/2008/11/081
  34. “Description of the higher massless irreducible integer spins in the BRST approach” In Mod. Phys. Lett. A 13, 1998, pp. 1853–1864 DOI: 10.1142/S0217732398001947
  35. Cestmir Burdik, A. Pashnev and M. Tsulaia “On the Mixed symmetry irreducible representations of the Poincare group in the BRST approach” In Mod. Phys. Lett. A 16, 2001, pp. 731–746 DOI: 10.1142/S0217732301003826
  36. I.L. Buchbinder, A. Pashnev and M. Tsulaia “Lagrangian formulation of the massless higher integer spin fields in the AdS background” In Phys. Lett. B 523, 2001, pp. 338–346 DOI: 10.1016/S0370-2693(01)01268-0
  37. I.L. Buchbinder, A. Pashnev and M. Tsulaia “Massless higher spin fields in the AdS background and BRST constructions for nonlinear algebras” In 4th International Workshop on Supersymmetry and Quantum Symmetries: 16th Max Born Symposium, 2002, pp. 3–10 arXiv:hep-th/0206026
  38. “On higher spin theory: Strings, BRST, dimensional reductions” In Class. Quant. Grav. 21, 2004, pp. S1457–1464 DOI: 10.1088/0264-9381/21/10/018
  39. I.L. Buchbinder, V.A. Krykhtin and A. Pashnev “BRST approach to Lagrangian construction for fermionic massless higher spin fields” In Nucl. Phys. B 711, 2005, pp. 367–391 DOI: 10.1016/j.nuclphysb.2005.01.017
  40. “Gauge invariant Lagrangian construction for massive bosonic higher spin fields in D dimensions” In Nucl. Phys. B 727, 2005, pp. 537–563 DOI: 10.1016/j.nuclphysb.2005.07.035
  41. “Gauge invariant Lagrangian construction for massive higher spin fermionic fields” In Phys. Lett. B 641, 2006, pp. 386–392 DOI: 10.1016/j.physletb.2006.08.060
  42. “Higher-spin geometry and string theory” In J. Phys. Conf. Ser. 33, 2006, pp. 57 DOI: 10.1088/1742-6596/33/1/006
  43. “On higher spins and the tensionless limit of string theory” In Nucl. Phys. B 682, 2004, pp. 83–116 DOI: 10.1016/j.nuclphysb.2004.01.024
  44. Mojtaba Najafizadeh “Off-shell supersymmetric continuous spin gauge theory” In JHEP 02, 2022, pp. 038 DOI: 10.1007/JHEP02(2022)038
  45. Anders K.H. Bengtsson “BRST Theory for Continuous Spin” In JHEP 10, 2013, pp. 108 DOI: 10.1007/JHEP10(2013)108
  46. I.L. Buchbinder, V.A. Krykhtin and H. Takata “BRST approach to Lagrangian construction for bosonic continuous spin field” In Phys. Lett. B 785, 2018, pp. 315–319 DOI: 10.1016/j.physletb.2018.07.070
  47. “Towards Lagrangian construction for infinite half-integer spin field” In Nucl. Phys. B 958, 2020, pp. 115114 DOI: 10.1016/j.nuclphysb.2020.115114
  48. “On the off-shell superfield Lagrangian formulation of 4D, N=1 supersymmetric infinite spin theory” In Phys. Lett. B 829, 2022, pp. 137139 DOI: 10.1016/j.physletb.2022.137139
  49. “Lagrangian formulation for free 6⁢D6𝐷6D6 italic_D infinite spin field” In Nucl. Phys. B 996, 2023, pp. 116365 DOI: 10.1016/j.nuclphysb.2023.116365
  50. “BRST construction for infinite spin field on A⁢d⁢S4𝐴𝑑subscript𝑆4AdS_{4}italic_A italic_d italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT”, 2024 arXiv:2403.14446 [hep-th]
  51. “Infinite (continuous) spin particle in constant curvature space”, 2024 arXiv:2402.13879 [hep-th]
  52. “Ideas and methods of supersymmetry and supergravity: Or a walk through superspace”, 1998
  53. E.P. Wigner “Relativistische Wellengleichungen” In Zeitschrift für Physik 124.7, 1948, pp. 665–684 DOI: 10.1007/BF01668901
  54. R.R. Metsaev “Shadows, currents and AdS” In Phys. Rev. D 78, 2008, pp. 106010 DOI: 10.1103/PhysRevD.78.106010
  55. “The Continuous spin limit of higher spin field equations” In JHEP 01, 2006, pp. 115 DOI: 10.1088/1126-6708/2006/01/115
  56. I.L. Buchbinder, V.A. Krykhtin and P.M. Lavrov “Gauge invariant Lagrangian formulation of higher spin massive bosonic field theory in AdS space” In Nucl. Phys. B 762, 2007, pp. 344–376 DOI: 10.1016/j.nuclphysb.2006.11.021
  57. “Gauge Invariant Lagrangians for Free and Interacting Higher Spin Fields. A Review of the BRST formulation” In Int. J. Mod. Phys. A 24, 2009, pp. 1–60 DOI: 10.1142/S0217751X09043134
  58. G.K. Savvidy “Tensionless strings: Physical Fock space and higher spin fields” In Int. J. Mod. Phys. A 19, 2004, pp. 3171–3194 DOI: 10.1142/S0217751X04018312
  59. J. Mourad “Continuous spin and tensionless strings”, 2004 arXiv:hep-th/0410009
  60. J. Mourad “Continuous spin particles from a string theory”, 2005 arXiv:hep-th/0504118
  61. Dario Francia, J. Mourad and A. Sagnotti “Current Exchanges and Unconstrained Higher Spins” In Nucl. Phys. B 773, 2007, pp. 203–237 DOI: 10.1016/j.nuclphysb.2007.03.021
  62. R.R. Metsaev “Cubic interaction vertices for continuous-spin fields and arbitrary spin massive fields” In JHEP 11, 2017, pp. 197 DOI: 10.1007/JHEP11(2017)197
  63. Xavier Bekaert, Jihad Mourad and Mojtaba Najafizadeh “Continuous-spin field propagator and interaction with matter” In JHEP 11, 2017, pp. 113 DOI: 10.1007/JHEP11(2017)113
  64. Xavier Bekaert, Euihun Joung and Jihad Mourad “On higher spin interactions with matter” In JHEP 05, 2009, pp. 126 DOI: 10.1088/1126-6708/2009/05/126
  65. R.R. Metsaev “BRST-BV approach to cubic interaction vertices for massive and massless higher-spin fields” In Phys. Lett. B 720, 2013, pp. 237–243 DOI: 10.1016/j.physletb.2013.02.009

Summary

We haven't generated a summary for this paper yet.