Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonadiabatic evolution and thermodynamics for a boundary-driven system with a weak intrasubsystem interaction (2404.14081v2)

Published 22 Apr 2024 in quant-ph

Abstract: We derive a time-dependent master equation for an externally driven system whose subsystems weakly interact with each other and locally connect to the thermal reservoirs. The nonadiabatic equation obtained here can be viewed as a generalization of the local master equation, which has already been extensively used in describing the dynamics of a boundary-driven system. In addition, we investigate the fundamental reason underlying the thermodynamic inconsistency generated by the local and nonadiabatic master equations. We fnd that these two equations are consistent with the second law of thermodynamics when the system is far away from the steady state, while they give rise to the contradiction at the steady state. Finally, we numerically confrm our results by considering a toy model consisting of two qubits and two local heat baths.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. J. Fourier, Théorie Analytique de la Chaleur (Firmin Didot, Paris, 1822).
  2. V. Popkov and R. Livi, Manipulating energy and spin currents in non-equilibrium systems of interacting qubits, New Journal of Physics 15, 023030 (2013).
  3. A. Bermudez, M. Bruderer, and M. B. Plenio, Controlling and measuring quantum transport of heat in trapped-ion crystals, Phys. Rev. Lett. 111, 040601 (2013).
  4. Z.-X. Man, N. B. An, and Y.-J. Xia, Controlling heat flows among three reservoirs asymmetrically coupled to two two-level systems, Phys. Rev. E 94, 042135 (2016).
  5. T. c. v. Prosen and I. Pižorn, Quantum phase transition in a far-from-equilibrium steady state of an 𝑋𝑌𝑋𝑌\mathit{XY}italic_XY spin chain, Phys. Rev. Lett. 101, 105701 (2008).
  6. M. T. Mitchison and M. B. Plenio, Non-additive dissipation in open quantum networks out of equilibrium, New Journal of Physics 20, 033005 (2018).
  7. T. c. v. Prosen and M. Žnidarič, Long-range order in nonequilibrium interacting quantum spin chains, Phys. Rev. Lett. 105, 060603 (2010).
  8. N. Linden, S. Popescu, and P. Skrzypczyk, How small can thermal machines be? the smallest possible refrigerator, Phys. Rev. Lett. 105, 130401 (2010).
  9. A. Mari and J. Eisert, Cooling by heating: Very hot thermal light can significantly cool quantum systems, Phys. Rev. Lett. 108, 120602 (2012).
  10. U. Weiss, Quantum dissipative systems (World Scientific, 2012).
  11. H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, UK, 2014).
  12. K. Jacobs, Quantum Measurement Theory and its Applications (Cambridge University Press, Cambridge, UK, 2014).
  13. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2010).
  14. A. Levy and R. Kosloff, The local approach to quantum transport may violate the second law of thermodynamics, Europhysics Letters 107, 20004 (2014).
  15. A. Purkayastha, A. Dhar, and M. Kulkarni, Out-of-equilibrium open quantum systems: A comparison of approximate quantum master equation approaches with exact results, Phys. Rev. A 93, 062114 (2016).
  16. G. G. Damas, R. J. de Assis, and N. G. de Almeida, Cooling with fermionic thermal reservoirs, Phys. Rev. E 107, 034128 (2023).
  17. L. Schuab, E. Pereira, and G. T. Landi, Energy rectification in quantum graded spin chains: Analysis of the 𝑋𝑋𝑍𝑋𝑋𝑍\mathit{XXZ}italic_XXZ model, Phys. Rev. E 94, 042122 (2016).
  18. T. c. v. Prosen, Exact nonequilibrium steady state of a strongly driven open 𝑋𝑋𝑍𝑋𝑋𝑍\mathit{XXZ}italic_XXZ chain, Phys. Rev. Lett. 107, 137201 (2011).
  19. L. P. Bettmann, M. J. Kewming, and J. Goold, Thermodynamics of a continuously monitored double-quantum-dot heat engine in the repeated interactions framework, Phys. Rev. E 107, 044102 (2023).
  20. J. P. Santos and F. L. Semião, Master equation for dissipative interacting qubits in a common environment, Phys. Rev. A 89, 022128 (2014).
  21. F. L. Curzon and B. Ahlborn, Efficiency of a carnot engine at maximum power output, American Journal of Physics 43, 22 (1975).
  22. P. Nalbach, S. Vishveshwara, and A. A. Clerk, Quantum kibble-zurek physics in the presence of spatially correlated dissipation, Phys. Rev. B 92, 014306 (2015).
  23. P. R. Zulkowski and M. R. DeWeese, Optimal protocols for slowly driven quantum systems, Phys. Rev. E 92, 032113 (2015).
  24. D. Wang and D. Xu, Nonadiabatic evolution and thermodynamics of a time-dependent open quantum system, Phys. Rev. A 104, 032201 (2021a).
  25. V. Čápek, Zeroth and second laws of thermodynamics simultaneously questioned in the quantum microworld, The European Physical Journal B-Condensed Matter and Complex Systems 25, 101 (2002).
  26. J. T. Stockburger and T. Motz, Thermodynamic deficiencies of some simple lindblad operators: A diagnosis and a suggestion for a cure, Fortschritte der Physik 65, 1600067 (2017).
  27. A. S. Trushechkin and I. V. Volovich, Perturbative treatment of inter-site couplings in the local description of open quantum networks, Europhysics Letters 113, 30005 (2016).
  28. F. Barra, The thermodynamic cost of driving quantum systems by their boundaries, Scientific reports 5, 14873 (2015).
  29. G. T. Landi and M. Paternostro, Irreversible entropy production: From classical to quantum, Rev. Mod. Phys. 93, 035008 (2021).
  30. A. Hewgill, G. De Chiara, and A. Imparato, Quantum thermodynamically consistent local master equations, Phys. Rev. Res. 3, 013165 (2021).
  31. S.-Y. Wang, Q. Yang, and F.-L. Zhang, Thermodynamically consistent master equation based on subsystem eigenstates, Phys. Rev. E 107, 014108 (2023).
  32. D. Wang and D. Xu, Nonadiabatic evolution and thermodynamics of a time-dependent open quantum system, Phys. Rev. A 104, 032201 (2021b).
  33. G. Lindblad, On the generators of quantum dynamical semigroups, Communications in Mathematical Physics 48, 119 (1976).
  34. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely positive dynamical semigroups of n-level systems, Journal of Mathematical Physics 17, 821 (1976).
  35. H. J. Carmichael, Statistical methods in quantum optics 1: master equations and Fokker-Planck equations (Springer Science & Business Media, 2013).
  36. D. J. Griffiths and D. F. Schroeter, Introduction to quantum mechanics (Cambridge university press, 2018).
  37. R. Dann, A. Levy, and R. Kosloff, Time-dependent markovian quantum master equation, Phys. Rev. A 98, 052129 (2018).
  38. The phase factor ϕn⁢(t)subscriptitalic-ϕ𝑛𝑡\phi_{n}(t)italic_ϕ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_t ) is non-degenerate means that we have n=m𝑛𝑚n=mitalic_n = italic_m when ϕn⁢m⁢(t)=0subscriptitalic-ϕ𝑛𝑚𝑡0\phi_{nm}(t)=0italic_ϕ start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT ( italic_t ) = 0, while ϕn⁢m⁢(t)subscriptitalic-ϕ𝑛𝑚𝑡\phi_{nm}(t)italic_ϕ start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT ( italic_t ) is non-degenerate implies that we have n=n′𝑛superscript𝑛′n=n^{\prime}italic_n = italic_n start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and m=m′𝑚superscript𝑚′m=m^{\prime}italic_m = italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT under the conditions of ϕn⁢m⁢(t)≠0subscriptitalic-ϕ𝑛𝑚𝑡0\phi_{nm}(t)\neq 0italic_ϕ start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT ( italic_t ) ≠ 0 and ϕn⁢m⁢(t)=ϕn′⁢m′⁢(t)subscriptitalic-ϕ𝑛𝑚𝑡subscriptitalic-ϕsuperscript𝑛′superscript𝑚′𝑡\phi_{nm}(t)=\phi_{n^{\prime}m^{\prime}}(t)italic_ϕ start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT ( italic_t ) = italic_ϕ start_POSTSUBSCRIPT italic_n start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_m start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( italic_t ). See the toy model discussed in Sec. V as an example.
  39. Without loss of the generality, here we assume fi⁢(0)=0subscript𝑓𝑖00f_{i}(0)=0italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( 0 ) = 0.

Summary

We haven't generated a summary for this paper yet.